scholarly journals Protective Actions of Cilnidipine: Dual L/N-Type Calcium Channel Blocker Against Hypertensive Renal Injury in Rats

2021 ◽  
Vol 14 (4) ◽  
pp. 1887-1893
Author(s):  
Gouher Banu Shaikh ◽  
Surekha Hippargi ◽  
Dewan S. A Majid ◽  
Kusal K Das

Background: Cilnidipine belongs to fourth generation dihydropyridine calcium channel blocker (CCB). It is a dual L & N-type CCB. L- type calcium channels are present on the vascular smooth muscle and N-type calcium channels are present on the presynaptic nerve terminals. Cilnidipine has a vasodilating effect, its action is slow and long lasting. Aim and objectives: Aim of present study was to demonstrate the beneficial effects of cilnidipine on the hypertensive renal injury rats. And our objectives is to assess renal injury parameters (Proteinuria, Creatinine clearance, Renal fibrosis/glomerulosclerosis) in response to chronic NG-nitro-L-arginine methyl ester hydrochloride (L-NAME) treatment in the presence or absence of cilnidipine treatment. Material and methods: Male albino Wister rats were procured from institutional animal house, divided into 4 groups (n=6 in each group). Group1 treated with vehicle (control), group2 treated with cilnidipine, group3 treated with L-NAME, group4 treated with L-NAME & cilnidipine. 24 hour urinary protein and creatinine clearance were measured. Serum urea and creatinine levels are also measured. Urinary and serum Angiotensin II levels were measured. Histopathological examination of kidneys was performed. Results: Our results demonstrate that treatment with cilnidipine (group4) there is reduction in 24hr urinary protein, improvement in creatinine clearance. We observed there was renal glomerulosclerosis and tubular degeneration of kidney tubules in group3 rats and reduction of renal injury in group4 rats. We also found reduced urinary and serum Angiotensin II level in cilnidipine treated (group 4) rats. Conclusion: These findings indicated that cilnidipine act as renoprotective agent and reduces glomerular damage in L-NAME induced hypertensive rats.

1996 ◽  
Vol 270 (2) ◽  
pp. G287-G290 ◽  
Author(s):  
A. W. Mangel ◽  
L. Scott ◽  
R. A. Liddle

To examine the role of calcium channels in depolarization-activated cholecystokinin (CCK) release, studies were performed in an intestinal CCK-secreting cell line, STC-1. Blockade of potassium channels with barium chloride (5 mM) increased the release of CCK by 374.6 +/- 46.6% of control levels. Barium-induced secretion was inhibited by the L-type calcium-channel blocker, nicardipine. Nicardipine (10(-9)-10(-5) M) produced a dose-dependent inhibition in barium-stimulated secretion with a half-maximal inhibition (IC50) value of 0.1 microM. A second L-type calcium-channel blocker, diltiazem (10(-9)-10(-4) M), also inhibited barium-induced CCK secretion with an IC50 value of 5.1 microM. By contrast, the T-type calcium-channel blocker, nickel chloride (10(-7)-10(-8) M), failed to significantly inhibit barium-induced CCK secretion. To further evaluate a role for L-type calcium channels in the secretion of CCK, the effects of the L-type calcium channel opener, BAY K 8644, were examined. BAY K 8644 (10(-8)-10(-4) M) produced a dose-dependent stimulation in CCK release with a mean effective concentration value of 0.2 microM. Recordings of single-channel currents from inside-out membrane patches showed activation of calcium channels by BAY K 8644 (1 microM), with a primary channel conductance of 26.0 +/- 1.2 pS. It is concluded that inhibition of potassium channel activity depolarizes the plasma membrane, thereby activating L-type, but not T-type, calcium channels. The corresponding influx of calcium serves to trigger secretion of CCK.


Sign in / Sign up

Export Citation Format

Share Document