Meperidine Decreases the Shivering Threshold Twice as Much as the Vasoconstriction Threshold 

1997 ◽  
Vol 86 (5) ◽  
pp. 1046-1054 ◽  
Author(s):  
Andrea Kurz ◽  
Takehiko Ikeda ◽  
Daniel I. Sessler ◽  
Merlin D. Larson ◽  
Andrew R. Bjorksten ◽  
...  

Background Meperidine administration is a more effective treatment for shivering than equianalgesic doses of other opioids. However, it remains unknown whether meperidine also profoundly impairs other thermoregulatory responses, such as sweating or vasoconstriction. Proportional inhibition of vasoconstriction and shivering suggests that the drug acts much like alfentanil and anesthetics but possesses greater thermoregulatory than analgesic potency. In contrast, disproportionate inhibition would imply a special antishivering mechanism. Accordingly, the authors tested the hypothesis that meperidine administration produces a far greater concentration-dependent reduction in the shivering than vasoconstriction threshold. Methods Nine volunteers were each studied on three days: 1) control (no opioid); 2) a target total plasma meperidine concentration of 0.6 microgram/ml (40 mg/h); and 3) a target concentration of 1.8 micrograms/ml (120 mg/h). Each day, skin and core temperatures were increased to provoke sweating and then subsequently reduced to elicit vasoconstriction and shivering. Core-temperature thresholds (at a designated skin temperature of 34 degrees C) were computed using established linear cutaneous contributions to control sweating (10%) and vasoconstriction and shivering (20%). The dose-dependent effects of unbound meperidine on thermoregulatory response thresholds was then determined using linear regression. Results are presented as means +/- SDs. Results The unbound meperidine fraction was approximately 35%. Meperidine administration slightly increased the sweating threshold (0.5 +/- 0.8 degree C.microgram-1.ml; r2 = 0.51 +/- 0.37) and markedly decreased the vasoconstriction threshold (-3.3 +/- 1.5 degrees C.microgram-1.ml; r2 = 0.92 +/- 0.08). However, meperidine reduced the shivering threshold nearly twice as much as the vasoconstriction threshold (-6.1 +/- 3.0 degrees C.microgram-1.ml; r2 = 0.97 +/- 0.05; P = 0.001). Conclusions The special antishivering efficacy of meperidine results at least in part from an uncharacteristically large reduction in the shivering threshold rather than from exaggerated generalized thermoregulatory inhibition. This pattern of thermoregulatory impairment differs from that produced by alfentanil, clonidine, propofol, and the volatile anesthetics, all which reduce the vasoconstriction and shivering thresholds comparably.

1995 ◽  
Vol 82 (5) ◽  
pp. 1169-1180 ◽  
Author(s):  
Takashi Matsukawa ◽  
Andrea Kurz ◽  
Daniel I. Sessler ◽  
Andrew R. Bjorksten ◽  
Benjamin Merrifield ◽  
...  

Background Skin temperature is best kept constant when determining response thresholds because both skin and core temperatures contribute to thermoregulatory control. In practice, however, it is difficult to evaluate both warm and cold thresholds while maintaining constant cutaneous temperature. A recent study shows that vasoconstriction and shivering thresholds are a linear function of skin and core temperatures, with skin contributing 20 +/- 6% and 19 +/- 8%, respectively. (Skin temperature has long been known to contribute approximately 10% to the control of sweating). Using these relations, we were able to experimentally manipulate both skin and core temperatures, subsequently compensate for the changes in skin temperature, and finally report the results in terms of calculated core-temperature thresholds at a single-designated skin temperature. Methods Five volunteers were each studied on 4 days: (1) control; (2) a target blood propofol concentration of 2 micrograms/ml; (3) a target concentration of 4 micrograms/ml; and (4) a target concentration of 8 micrograms/ml. On each day, we increased skin and core temperatures sufficiently to provoke sweating. Skin and core temperatures were subsequently reduced to elicit peripheral vasoconstriction and shivering. We mathematically compensated for changes in skin temperature by using the established linear cutaneous contributions to the control of sweating (10%) and to vasoconstriction and shivering (20%). From these calculated core-temperature thresholds (at a designated skin temperature of 35.7 degrees C), the propofol concentration-response curves for the sweating, vasoconstriction, and shivering thresholds were analyzed using linear regression. We validated this new method by comparing the concentration-dependent effects of propofol with those obtained previously with an established model. Results The concentration-response slopes for sweating and vasoconstriction were virtually identical to those reported previously. Propofol significantly decreased the core temperature triggering vasoconstriction (slope = -0.6 +/- 0.1 degrees C.micrograms-1.ml-1; r2 = 0.98 +/- 0.02) and shivering (slope = -0.7 +/- 0.1 degrees C.micrograms -1.ml-1; r2 = 0.95 +/- 0.05). In contrast, increasing the blood propofol concentration increased the sweating threshold only slightly (slope = 0.1 +/- 0.1 degrees C.micrograms -1.ml-1; r2 = 0.46 +/- 0.39). Conclusions Advantages of this new model include its being nearly noninvasive and requiring relatively little core-temperature manipulation. Propofol only slightly alters the sweating threshold, but markedly reduces the vasoconstriction and shivering thresholds. Reductions in the shivering and vasoconstriction thresholds are similar; that is, the vasoconstriction-to-shivering range increases only slightly during anesthesia.


2001 ◽  
Vol 95 (6) ◽  
pp. 1435-1440 ◽  
Author(s):  
Shinji Kohro ◽  
Quinn H. Hogan ◽  
Yuri Nakae ◽  
Michiaki Yamakage ◽  
Zeljko J. Bosnjak

Background Volatile anesthetics show an ischemic preconditioning-like cardioprotective effect, whereas intravenous anesthetics have cardioprotective effects for ischemic-reperfusion injury. Although recent evidence suggests that mitochondrial adenosine triphosphate-regulated potassium (mitoK(ATP)) channels are important in cardiac preconditioning, the effect of anesthetics on mitoK(ATP) is unexplored. Therefore, the authors tested the hypothesis that anesthetics act on the mitoK(ATP) channel and mitochondrial flavoprotein oxidation. Methods Myocardial cells were isolated from adult guinea pigs. Endogenous mitochondrial flavoprotein fluorescence, an indicator of mitochondrial flavoprotein oxidation, was monitored with fluorescence microscopy while myocytes were exposed individually for 15 min to isoflurane, sevoflurane, propofol, and pentobarbital. The authors further investigated the effect of 5-hydroxydeanoate, a specific mitoK(ATP) channel antagonist, on isoflurane- and sevoflurane-induced flavoprotein oxidation. Additionally, the effects of propofol and pentobarbital on isoflurane-induced flavoprotein oxidation were measured. Results Isoflurane and sevoflurane induced dose-dependent increases in flavoprotein oxidation (isoflurane: R2 = 0.71, n = 50; sevoflurane: R2 = 0.86, n = 20). The fluorescence increase produced by both isoflurane and sevoflurane was eliminated by 5-hydroxydeanoate. Although propofol and pentobarbital showed no significant effects on flavoprotein oxidation, they both dose-dependently inhibited isoflurane-induced flavoprotein oxidation. Conclusions Inhalational anesthetics induce flavoprotein oxidation through opening of the mitoK(ATP) channel. This may be an important mechanism contributing to anesthetic-induced preconditioning. Cardioprotective effects of intravenous anesthetics may not be dependent on flavoprotein oxidation, but the administration of propofol or pentobarbital may potentially inhibit the cardioprotective effect of inhalational anesthetics.


1993 ◽  
Vol 77 (4) ◽  
pp. 721???726 ◽  
Author(s):  
Andrea Kurz ◽  
Daniel I. Sessler ◽  
Marc Schroeder ◽  
Martin Kurz

1997 ◽  
Vol 273 (1) ◽  
pp. R407-R413 ◽  
Author(s):  
A. A. Romanovsky ◽  
C. T. Simons ◽  
M. Szekely ◽  
V. A. Kulchitsky

Experimentally, systemic inflammation induced by a bolus intravenous injection of lipopolysaccharide (LPS) may be accompanied by three different thermoregulatory responses: monophasic fever (the typical response to low doses of LPS), biphasic fever (medium doses), and hypothermia (high doses). In our recent study [Romanovsky, A. A., V. A. Kulchitsky, C. T. Simons, N. Sugimoto, and M. Szekely. Am. J. Physiol. (Regulatory Integrative Comp. Physiol.). In press], monophasic fever did not occur in subdiaphragmatically vagotomized rats. In the present work, we asked whether vagotomy affects the two other types of thermoregulatory response. Adult Wistar rats were vagotomized (or sham operated) and had an intravenous catheter implanted. On day 28 postvagotomy, the thermal responses to the intravenous injection of Escherichia coli LPS (0, 1, 10, 100, or 1,000 micrograms/kg) were tested in either a neutral (30 degrees C) or slightly cool (25 degrees C) environment. Three major results were obtained. 1) In the sham-operated rats, the 1 microgram/kg dose of LPS caused at 30 degrees C a monophasic fever with a maximal colonic temperature (Tc) rise of approximately 0.6 degree C; this response was abated (no Tc changes) in the vagotomized rats. 2) At 30 degrees C, all responses to higher doses of LPS (10-1,000 micrograms/kg) were represented by biphasic fevers (the higher the dose, the less pronounced the first and the more pronounced the second phase was); none of these biphasic fevers was altered in the vagotomized animals. 3) In response to the 1,000 micrograms/kg dose at 25 degrees C, hypothermia occurred: Tc changed by -0.5 +/- 0.1 degree C (nadir); this hypothermia was exaggerated (-1.1 +/- 0.1 degrees C) in the vagotomized rats. It is concluded that vagal afferentation may be important in the mediation of the response to minor amounts of circulating LPS, whereas the response to larger amounts is brought about mostly (if not exclusively) by nonvagal mechanisms. This difference may be explained by the dose-dependent mechanisms of the processing of exogenous pyrogens. Vagotomized animals also appear to be more sensitive to the hypothermizing action of LPS in a cool environment; the mechanisms of this phenomenon remain speculative.


1997 ◽  
Vol 87 (5) ◽  
pp. 1191-1198 ◽  
Author(s):  
Neil E. Farber ◽  
Christopher P. Harkin ◽  
Jennifer Niedfeldt ◽  
Antal G. Hudetz ◽  
John P. Kampine ◽  
...  

Background Volatile anesthetics are potent cerebral vasodilators. Although the predominant site of cerebrovascular resistance is attributed to intracerebral arterioles, no studies have compared the actions of volatile anesthetics on intraparenchymal microvessels. The authors compared the effects of halothane and isoflurane on intracerebral arteriolar responsiveness in hippocampal and neocortical microvessels using a brain slice preparation. Method After Institutional Review Board approval, hippocampal or neocortical brain slices were prepared from anesthetized Sprague-Dawley rats and placed in a perfusion-recording chamber, superfused with artificial cerebrospinal fluid. Arteriolar diameters were monitored with videomicroscopy before, during, and after halothane or isoflurane were equilibrated in the perfusate. PGF2alpha preconstricted vessels before anesthetic administration. A blinded observer using a computerized videomicrometer analyzed diameter changes. Results Baseline microvessel diameter and the degree of preconstriction were not different between groups. In the hippocampus, the volatile agents produced similar, concentration-dependent dilation (expressed as percent of preconstricted control +/- SEM) of 68 +/- 6% and 79 +/- 9% (1 MAC) and 120 +/- 3% and 109 +/- 5% (2 MAC) (P < 0.05) during halothane and isoflurane, respectively. In the cerebral cortex, isoflurane caused significantly less vasodilation than did similar MAC levels of halothane (84 +/- 9% vs. 42 +/- 5% dilation at 1 MAC; 121 +/- 4% vs. 83 +/- 5% dilation at 2 MAC halothane vs. isoflurane, respectively). Conclusion Halothane and isoflurane differentially produce dose-dependent dilation of intraparenchymal cerebral microvessels. These findings suggest that local effects of the volatile anesthetics on intracerebral microvessel diameter contribute significantly to alterations in cerebrovascular resistance and support previously described heterogeneous actions on cerebral blood flow produced by these agents.


1996 ◽  
Vol 85 (2) ◽  
pp. 240-245 ◽  
Author(s):  
Junyu Xiong ◽  
Andrea Kurz ◽  
Daniel I. Sessler ◽  
Olga Plattner ◽  
Richard Christensen ◽  
...  

Background Desflurane decreases the vasoconstriction and shivering thresholds disproportionately at high anesthetic concentrations. This result contrasts with the authors' previous report that isoflurane decreases the vasoconstriction threshold linearly. It is surprising that the basic shape of the concentration-response curve should differ with these two otherwise similar anesthetics. Therefore, the hypothesis that isoflurane produces a nonlinear reduction in the vasoconstriction threshold was tested. Because the effect of isoflurane on shivering remains unknown, the extent to which isoflurane reduces the shivering threshold also was determined. Methods Eight men volunteered to be studied on four randomly ordered days: (1) a target end-tidal isoflurane concentration of 0.55%, (2) a target concentration of 0.7%, (3) control (no anesthesia) and a target end-tidal concentration of 0.85%, and (4) a target end-tidal concentration of 1.0%. Volunteers were surface-cooled until peripheral vasoconstriction and shivering were observed. We arithmetically compensated for changes in skin temperature using the established linear cutaneous contributions to control for each response. From the calculated thresholds (core temperatures triggering responses at a designated skin temperature of 34 degrees C), the concentration-response relation was determined. Results Isoflurane administration produced a dose-dependent reduction in the vasoconstriction and shivering thresholds, decreasing each approximately 4.6 degrees C at an end-tidal concentration of 1%. Residual analysis indicated that the vasoconstriction and shivering thresholds were decreased in a nonlinear fashion during isoflurane administration. The vasoconstriction-to-shivering range was 1.5 +/- 0.8 degree C without isoflurane, and did not change significantly during isoflurane administration. Conclusions The vasoconstriction-to-shivering range remained unchanged by isoflurane administration. In this regard, the effects of isoflurane are similar to those of desflurane, propofol, and alfentanil. The current data differ from the authors' previous report, in that the dose-dependence for vasoconstriction was nonlinear, with isoflurane reducing the threshold disproportionately at higher anesthetic concentrations. Differing dose-dependence in the two studies may result either because the current study's volunteers were not exposed to surgical stimulation and were given less isoflurane, or because of design limitations in the previous protocol.


Author(s):  
M. Schroeder ◽  
M. Ozaki ◽  
A. Kurz ◽  
D. I. Sessler ◽  
R. Lenhardt ◽  
...  

1995 ◽  
Vol 83 (3) ◽  
pp. 593-603. ◽  
Author(s):  
Ning Miao ◽  
Martha J. Frazer ◽  
Carl III Lynch

Background The current study was performed to determine whether volatile anesthetics may include as part of their action in the central nervous system the depression of presynaptic transmitter release by alteration in intrasynaptic [Ca2+] ([Ca2+]i). Methods Guinea pig cerebrocortical synaptosomes were studied at 37 degrees C suspended in control buffer solution containing 1.3 mM external [Ca2+] ([Ca2+]e). Spectrofluorometric assays were used to monitor [Ca2+]i with the Ca(2+)-sensitive fluorophore Fura-2 and to monitor glutamate release with an enzyme-coupled assay that produced the fluorescent product nicotinamide adenine dinucleotide phosphate. To activate the increase in [Ca2+]i and glutamate release, synaptosomes were depolarized by abruptly increasing external [K+] from 5 to 35 mM. Responses were determined in solutions equilibrated with approximately 1 or 2 minimum alveolar concentration (MAC) isoflurane, enflurane, or halothane and also in solutions with decreased [Ca2+]e (0.025, 0.05, 0.1, 0.2, 0.4, and 0.6 mM). Results Although they had no action on basal behavior, the anesthetics depressed the K(+)-depolarization-induced increase in both [Ca2+]i and glutamate release in a dose-dependent fashion. The [Ca2+]i transient was inhibited by 13-21% per MAC, and glutamate release was depressed 14-28% per MAC. The depression of both [Ca2+]i and glutamate release caused by 2.5% isoflurane, 3.4% enflurane, and 1.5% halothane could be reproduced by a reduction in [Ca2+]e to 0.2-0.4 mM. Conclusions In this setting, isoflurane, enflurane, and halothane decrease [Ca2+]i in a manner consistent with inhibition of Ca2+ entry, possibly by specific voltage-gated neuronal Ca2+ channels. This decrease in [Ca2+]i is sufficient to account for all or most of the associated decrease in glutamate release.


1991 ◽  
Vol 69 (6) ◽  
pp. 752-760 ◽  
Author(s):  
G. A. Blaise ◽  
J. Noël ◽  
E. Villeneuve ◽  
C. Hollman ◽  
B. Vinet ◽  
...  

The effect of three volatile anesthetics (halothane, enflurane, and isoflurane) on coronary flow and metabolic state of isolated rat hearts was studied. These anesthetics are coronary dilators and their effects are dose dependent. At 2 MAC (minimum alveolar concentration), isoflurane, enflurane, and halothane increase coronary flow by 114 ± 5.9, 93 ± 6.1, and 77 ± 6.4%, respectively (p < 0.001). At these concentrations, they also have a modest but significant metabolic effect causing a 30% reduction in myocardial ATP and phosphocreatine levels, with no significant modification in ADP and AMP concentrations. Energy charge and lactate/pyruvate ratio were also unaffected by these anesthetics. The vascular and metabolic effects were reversible within 2 and 30 min, respectively. Perfusion of the hearts with a Krebs–Henseleit solution without Pi did not interfere with the vascular and the metabolic effect of the anesthetics; however, in this case, ATP and phosphocreatine concentration did not return to control levels after their discontinuation despite full recovery of the vascular effect. These data suggest that the volatile anesthetics have direct coronary vascular and myocardial metabolic effects and that these effects occur independently.Key words: anesthetics, volatile, coronary flow, metabolic equilibrium.


1997 ◽  
Vol 87 (4) ◽  
pp. 835-841 ◽  
Author(s):  
Pekka Talke ◽  
Farzin Tayefeh ◽  
Daniel I. Sessler ◽  
Renee Jeffrey ◽  
Mojtaba Noursalehi ◽  
...  

Background Clonidine decreases the vasoconstriction and shivering thresholds. It thus seems likely that the alpha2 agonist dexmedetomidine will also impair control of body temperature. Accordingly, the authors evaluated the dose-dependent effects of dexmedetomidine on the sweating, vasoconstriction, and shivering thresholds. They also measured the effects of dexmedetomidine on heart rate, blood pressures, and plasma catecholamine concentrations. Methods Nine male volunteers participated in this randomized, double-blind, cross-over protocol. The study drug was administered by computer-controlled infusion, targeting plasma dexmedetomidine concentrations of 0.0, 0.3, and 0.6 ng/ml. Each day, skin and core temperatures were increased to provoke sweating and then subsequently reduced to elicit vasoconstriction and shivering. Core-temperature thresholds were computed using established linear cutaneous contributions to control of sweating, vasoconstriction, and shivering. The dose-dependent effects of dexmedetomidine on thermoregulatory response thresholds were then determined using linear regression. Heart rate, arterial blood pressures, and plasma catecholamine concentrations were determined at baseline and at each threshold. Results Neither dexmedetomidine concentration increased the sweating threshold from control values. In contrast, dexmedetomidine administration reduced the vasoconstriction threshold by 1.61 +/- 0.80 degrees C x ng(-1) x ml (mean +/- SD) and the shivering threshold by 2.40 +/- 0.90 degrees C x ng(-1) x ml. Hemodynamic responses and catecholamine concentrations were reduced from baseline values, but they did not differ at the two tested dexmedetomidine doses. Conclusions Dexmedetomidine markedly increased the range of temperatures not triggering thermoregulatory defenses. The drug is thus likely to promote hypothermia in a typical hospital environment; it is also likely to prove an effective treatment for shivering.


Sign in / Sign up

Export Citation Format

Share Document