Effect of Drugs Used for Neuropathic Pain Management on Tetrodotoxin-resistant Na+Currents in Rat Sensory Neurons

2001 ◽  
Vol 94 (1) ◽  
pp. 137-144 ◽  
Author(s):  
Michael E. Bräu ◽  
Marc Dreimann ◽  
Andrea Olschewski ◽  
Werner Vogel ◽  
Gunter Hempelmann

Background Tetrodotoxin-resistant Na(+) channels play an important role in generation and conduction of nociceptive discharges in peripheral endings of small-diameter axons of the peripheral nervous system. Pathophysiologically, these channels may produce ectopic discharges in damaged nociceptive fibers, leading to neuropathic pain syndromes. Systemically applied Na(+) channel--blocking drugs can alleviate pain, the mechanism of which is rather unresolved. The authors investigated the effects of some commonly used drugs, i.e., lidocaine, mexiletine, carbamazepine, amitriptyline, memantine, and gabapentin, on tetrodotoxin-resistant Na+ channels in rat dorsal root ganglia. Methods Tetrodotoxin-resistant Na(+) currents were recorded in the whole-cell configuration of the patch-clamp method in enzymatically dissociated dorsal root ganglion neurons of adult rats. Half-maximal blocking concentrations were derived from concentration-inhibition curves at different holding potentials (-90, -70, and -60 mV). Results Lidocaine, mexiletine, and amitriptyline reversibly blocked tetrodotoxin-resistant Na(+) currents in a concentration- and use-dependent manner. Block by carbamazepine and memantine was not use-dependent at 2 Hz. Gabapentin had no effect at concentrations of up to 3 mm. Depolarizing the membrane potential from -90 mV to -60 mV reduced the available Na(+) current only by 23% but increased the sensitivity of the channels to the use-dependent blockers approximately fivefold. The availability curve of the current was shifted by 5.3 mV to the left in 300 microm lidocaine. Conclusions Less negative membrane potential and repetitive firing have little effect on tetrodotoxin-resistant Na(+) current amplitude but increase their sensitivity to lidocaine, mexiletine, and amitriptyline so that concentrations after intravenous administration of these drugs can impair channel function. This may explain alleviation from pain by reducing firing frequency in ectopic sites without depressing central nervous or cardiac excitability.

2002 ◽  
Vol 120 (2) ◽  
pp. 159-172 ◽  
Author(s):  
Chung-Chin Kuo ◽  
Ting-Jiun Lin ◽  
Chi-Pan Hsieh

Tetrodotoxin-resistant (TTX-R) Na+ channels are 1,000-fold less sensitive to TTX than TTX-sensitive (TTX-S) Na+ channels. On the other hand, TTX-R channels are much more susceptible to external Cd2+ block than TTX-S channels. A cysteine (or serine) residue situated just next to the aspartate residue of the presumable selectivity filter “DEKA” ring of the TTX-R channel has been identified as the key ligand determining the binding affinity of both TTX and Cd2+. In this study we demonstrate that the binding affinity of Cd2+ to the TTX-R channels in neurons from dorsal root ganglia has little intrinsic voltage dependence, but is significantly influenced by the direction of Na+ current flow. In the presence of inward Na+ current, the apparent dissociation constant of Cd2+ (∼200 μM) is ∼9 times smaller than that in the presence of outward Na+ current. The Na+ flow–dependent binding affinity change of Cd2+ block is true no matter whether the direction of Na+ current is secured by asymmetrical chemical gradient (e.g., 150 mM Na+ vs. 150 mM Cs+ on different sides of the membrane, 0 mV) or by asymmetrical electrical gradient (e.g., 150 mM Na+ on both sides of the membrane, −20 mV vs. 20 mV). These findings suggest that Cd2+ is a pore blocker of TTX-R channels with its binding site located in a multiion, single-file region near the external pore mouth. Quantitative analysis of the flow dependence with the flux-coupling equation reveals that at least two Na+ ions coexist with the blocking Cd2+ ion in this pore region in the presence of 150 mM ambient Na+. Thus, the selectivity filter of the TTX-R Na+ channels in dorsal root ganglion neurons might be located in or close to a multiion single-file pore segment connected externally to a wide vestibule, a molecular feature probably shared by other voltage-gated cationic channels, such as some Ca2+ and K+ channels.


2000 ◽  
Vol 92 (2) ◽  
pp. 529-529 ◽  
Author(s):  
Lingamaneni Ratnakumari ◽  
Tatyana N. Vysotskaya ◽  
Daniel S. Duch ◽  
Hugh C. Hemmings

Background Despite their key role in the generation and propagation of action potentials in excitable cells, voltage-gated sodium (Na+) channels have been considered to be insensitive to general anesthetics. The authors tested the sensitivity of neuronal Na+ channels to structurally similar anesthetic (1-chloro-1,2,2-trifluorocyclobutane; F3) and nonanesthetic (1,2-dichlorohexafluorocyclobutane; F6) polyhalogenated cyclobutanes by neurochemical and electrophysiologic methods. Methods Synaptosomes (pinched-off nerve terminals) from adult rat cerebral cortex were used to determine the effects of F3 and F6 on 4-aminopyridine- or veratridine-evoked (Na+ channel-dependent) glutamate release (using an enzyme-coupled spectrofluorimetric assay) and increases in intracellular Ca2+ ([Ca2+]i) (using ion-specific spectrofluorimetry). Effects of F3 and F6 on Na+ currents were evaluated directly in rat lumbar dorsal root ganglion neurons by whole-cell patch-clamp recording. Results F3 inhibited glutamate release evoked by 4-aminopyridine (inhibitory concentration of 50% [IC50] = 0.77 mM [approximately 0.8 minimum alveolar concentration (MAC)] or veratridine (IC50 = 0.42 mM [approximately 0.4 MAC]), and veratridine-evoked increases in [Ca2+]i (IC50 = 0.5 mM [approximately 0.5 MAC]) in synaptosomes; F6 had no significant effects up to 0.05 mM (approximately twice the predicted MAC). F3 caused reversible membrane potential-independent inhibition of peak Na+ currents (70+/-9% block at 0.6 mM [approximately 0.6 MAC]), and a hyperpolarizing shift in the voltage-dependence of steady state inactivation in dorsal root ganglion neurons (-21+/-9.3 mV at 0.6 mM). F6 inhibited peak Na+ currents to a lesser extent (16+/-2% block at 0.018 mM [predicted MAC]) and had minimal effects on steady state inactivation. Conclusions The anesthetic cyclobutane F3 significantly inhibited Na+ channel-mediated glutamate release and increases in [Ca2+]i. In contrast, the nonanesthetic cyclobutane F6 had no significant effects at predicted anesthetic concentrations. F3 inhibited dorsal root ganglion neuron Na+ channels with a potency and by mechanisms similar to those of conventional volatile anesthetics; F6 was less effective and did not produce voltage-dependent block. This concordance between anesthetic activity and Na+ channel inhibition supports a role for presynaptic Na+ channels as targets for general anesthetic effects and suggests that shifting the voltage-dependence of Na+ channel inactivation is an important property of volatile anesthetic compounds.


Neuroreport ◽  
2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Gimin Kim ◽  
Michiko Nakamura ◽  
Jin-Hwa Cho ◽  
Soonhyeun Nam ◽  
Il-Sung Jang

2019 ◽  
Vol 47 (7) ◽  
pp. 3253-3260
Author(s):  
Huaishuang Shen ◽  
Minfeng Gan ◽  
Huilin Yang ◽  
Jun Zou

Objective Neurobiology studies are increasingly focused on the dorsal root ganglion (DRG), which plays an important role in neuropathic pain. Existing DRG neuron primary culture methods have considerable limitations, including challenging cell isolation and poor cell yield, which cause difficulty in signaling pathway studies. The present study aimed to establish an integrated primary culture method for DRG neurons. Methods DRGs were obtained from fetal rats by microdissection, and then dissociated with trypsin. The dissociated neurons were treated with 5-fluorouracil to promote growth of neurons from the isolated cells. Then, reverse transcription polymerase chain reaction and immunofluorescence assays were used to identify and purify DRG neurons. Results Isolated DRGs were successfully dissociated and showed robust growth as individual DRG neurons in neurobasal medium. Both mRNA and protein assays confirmed that DRG neurons expressed neurofilament-200 and neuron-specific enolase. Conclusions Highly purified, stable DRG neurons could be easily harvested and grown for extended periods by using this integrated cell isolation and purification method, which may help to elucidate the mechanisms underlying neuropathic pain.


Sign in / Sign up

Export Citation Format

Share Document