Different suppressive effect of lidocaine on persistent Na+ current and transient Na+ current in dorsal root ganglion neurons

2007 ◽  
Vol 22 (6) ◽  
pp. 325-328
Author(s):  
Hui Dong ◽  
Yan-hong FAN ◽  
YU-ying Wang ◽  
Wen-ting Wang ◽  
San-jue HU
Brain ◽  
2020 ◽  
Vol 143 (8) ◽  
pp. 2421-2436 ◽  
Author(s):  
Lubin Chen ◽  
Jianying Huang ◽  
Curtis Benson ◽  
Karen L Lankford ◽  
Peng Zhao ◽  
...  

Abstract Vincristine, a widely used chemotherapeutic agent, produces painful peripheral neuropathy. The underlying mechanisms are not well understood. In this study, we investigated whether voltage-gated sodium channels are involved in the development of vincristine-induced neuropathy. We established a mouse model in which repeated systemic vincristine treatment results in the development of significant mechanical allodynia. Histological examinations did not reveal major structural changes at proximal sciatic nerve branches or distal toe nerve fascicles at the vincristine dose used in this study. Immunohistochemical studies and in vivo two-photon imaging confirmed that there is no significant change in density or morphology of intra-epidermal nerve terminals throughout the course of vincristine treatment. These observations suggest that nerve degeneration is not a prerequisite of vincristine-induced mechanical allodynia in this model. We also provided the first detailed characterization of tetrodotoxin-sensitive (TTX-S) and resistant (TTX-R) sodium currents in dorsal root ganglion neurons following vincristine treatment. Accompanying the behavioural hyperalgesia phenotype, voltage-clamp recordings of small and medium dorsal root ganglion neurons from vincristine-treated animals revealed a significant upregulation of TTX-S Na+ current in medium but not small neurons. The increase in TTX-S Na+ current density is likely mediated by Nav1.6, because in the absence of Nav1.6 channels, vincristine failed to alter TTX-S Na+ current density in medium dorsal root ganglion neurons and, importantly, mechanical allodynia was significantly attenuated in conditional Nav1.6 knockout mice. Our data show that TTX-S sodium channel Nav1.6 is involved in the functional changes of dorsal root ganglion neurons following vincristine treatment and it contributes to the maintenance of vincristine-induced mechanical allodynia.


2007 ◽  
Vol 417 (1) ◽  
pp. 90-94 ◽  
Author(s):  
Fumiko Hayase ◽  
Hiroshi Matsuura ◽  
Mitsuru Sanada ◽  
Kanako Kitada-Hamada ◽  
Mariko Omatsu-Kanbe ◽  
...  

2020 ◽  
Vol 18 (10) ◽  
pp. 791-797
Author(s):  
Qiong Xiang ◽  
Jing-Jing Li ◽  
Chun-Yan Li ◽  
Rong-Bo Tian ◽  
Xian-Hui Li

Background: Our previous study has indicated that somatostatin potently inhibits neuropathic pain through the activation of its type 2 receptor (SSTR2) in mouse dorsal root ganglion and spinal cord. However, the underlying mechanism of this activation has not been elucidated clearly Objective: The aim of this study is to perform the pharmacological studies on the basis of sciatic nerve-pinch mice model and explore the underlying mechanism involving SSTR2. Methods: On the basis of a sciatic nerve-pinch injury model, we aimed at comparing the painful behavior and dorsal root ganglion neurons neurochemical changes after the SSTR2 antibody (anti- SSTR2;5μl,1μg/ml) administration in the mouse. Results: After pinch nerve injury, we found that the mechanical hyperalgesia and severely painful behavior (autotomy) were detected after the application of SSTR2 antibody (anti-SSTR2; 5μl, 1μg/ml) on the pinch-injured nerve. The up-regulated phosphorylated ERK (p-ERK) expression and the apoptotic marker (i.e., Bax) were significantly decreased in DRGs after anti-SSTR2 treatment. Conclusion: The current data suggested that inhibitory changes in proteins from the apoptotic pathway in anti-SSTR2-treated groups might be taking place to overcome the protein deficits caused by SSTR2 antibody and supported the new therapeutic intervention with SSTR2 antagonist for neuronal degeneration following nerve injury.


Sign in / Sign up

Export Citation Format

Share Document