Isoflurane Modulation of Neuronal Nicotinic Acetylcholine Receptors Expressed in Human Embryonic Kidney Cells

2005 ◽  
Vol 102 (1) ◽  
pp. 76-84 ◽  
Author(s):  
Megumi Yamashita ◽  
Takashi Mori ◽  
Keiichi Nagata ◽  
Jay Z. Yeh ◽  
Toshio Narahashi

Background It is well established that neuronal nicotinic acetylcholine receptors (nAChRs) are sensitive to inhalational anesthetics. The authors previously reported that halothane potently blocked alpha4beta2-type nAChRs of rat cortical neurons. However, the effect of isoflurane, which is widely used clinically, on nAChRs largely remains to be seen. The authors studied the effects of isoflurane as compared with sevoflurane and halothane on the human alpha4beta2 nAChRs expressed in human embryonic kidney cells. Methods The whole-cell and single-channel patch clamp techniques were used to record currents induced by acetylcholine. Results Isoflurane, sevoflurane, and halothane suppressed the acetylcholine-induced currents in a concentration-dependent manner with 50% inhibitory concentrations of 67.1, 183.3, and 39.8 microM, respectively, which correspond to 0.5 minimum alveolar concentration or less. When anesthetics were coapplied with acetylcholine, isoflurane and sevoflurane decreased the apparent affinity of receptor for acetylcholine, but halothane, in addition, decreased the maximum acetylcholine current. When isoflurane was preapplied and coapplied, its inhibitory action was independent of acetylcholine concentration. Isoflurane blocked the nAChR in both resting and activated states. Single-channel analyses revealed that isoflurane at 84 microM decreased the mean open time and burst duration without inducing "flickering" during channel openings. Isoflurane increased the mean closed time. As a result, the open probability of single channels was greatly reduced by isoflurane. Conclusions Isoflurane, sevoflurane, and halothane potently blocked the alpha4beta2 nAChR. Isoflurane suppression of whole-cell acetylcholine currents was a result of decreases in the open time, burst duration, and open probability and an increase in the closed time of single channels. The high sensitivity of neuronal nAChRs to inhalational anesthetics is expected to play an important role in several stages of anesthesia.

2008 ◽  
Vol 99 (2) ◽  
pp. 999-1007 ◽  
Author(s):  
Bernard Hsiao ◽  
Karla B. Mihalak ◽  
Karl L. Magleby ◽  
Charles W. Luetje

Micromolar zinc potentiates neuronal nicotinic acetylcholine receptors (nAChRs) in a subtype-dependent manner. Zinc potentiates receptor function even at saturating agonist concentrations, without altering the receptor desensitization rate. Potentiation could occur through an increase in the number of available receptors, an increase in single-channel current amplitude, or an increase in single-channel open probability. To distinguish among these possibilities, we examined rat neuronal nAChRs expressed in Xenopus oocytes. Blockade of a large fraction of ACh activated α4β4 or α4β2 receptors by the open channel blocker hexamethonium failed to change the extent of potentiation by zinc, suggesting that zinc does not change the number of available receptors. The single-channel amplitudes of ACh (1 μM) activated α4β4 receptors in outside-out patches were similar in the absence and the presence of 100 μM zinc (3.0 ± 0.1 and 2.9 ± 0.1 pA, respectively). To determine the effect of zinc on single-channel open probability, we examined α4β4 receptors in cell-attached patches. The open probability at 100 nM ACh (0.011 ± 0.002) was increased 4.5-fold by 100 μM zinc (0.050 ± 0.008), accounting for most of the potentiation observed at the whole cell level. The increase in open probability was due to an increase in burst duration, which increased from 207 ± 38 ms in the absence of zinc to 830 ± 189 ms in the presence of zinc. Our results suggest that potentiation of neuronal nAChRs by zinc is due to a stabilization of the bursting states of the receptor.


1993 ◽  
Vol 70 (4) ◽  
pp. 1617-1628 ◽  
Author(s):  
X. Wang ◽  
S. N. Treistman ◽  
J. R. Lemos

1. Ca2+ currents through single channels in acutely dissociated nerve terminals from rat neurohypophyses were recorded using cell-attached patch recordings with 110 mM Ba2+ as the charge carrier. 2. One type (Nt, where the t denotes terminal) of single Ca2+ channel current was evoked only by depolarizing steps from holding potentials less negative than -50 mV. Because this channel opened primarily at the beginning of a 180-ms-long voltage pulse, the averaged ensemble current decayed rapidly (approximately 30 ms). Infrequently, the channel opened throughout such a long pulse, resulting in a long-lasting averaged ensemble current. The averaged channel open time constant (tau) was 0.34 ms and the two averaged closed time constants were 1.78 (tau 1) and 86.57 (tau 2) ms. The mean unitary slope conductance for this channel was 11 pS and its threshold for activation was approximately -10 mV. 3. The other type (L) of single Ca2+ channel current could be evoked in isolation by depolarizations from holding potentials more positive than or equal to -50 mV. This channel opened throughout an entire 180-ms-long voltage pulse. The averaged ensemble current, therefore, showed little inactivation. The averaged channel open-time constant was 0.49 ms and the two average closed time constants were 2.02 (tau 1) and 79.91 (tau 2) ms. The mean unitary slope conductance for this channel was 25 pS. 4. Bay K 8644 (5 microM), a dihydropyridine (DHP) Ca2+ channel agonist, increased the open probability of the larger-conductance L-type Ca2+ channel by prolonging the average duration (to 2.79 ms) of channel openings, but did not alter the single channel slope conductance. In contrast, the same concentration of Bay K 8644 did not affect the smaller-conductance Nt-type Ca2+ channel. The DHP Ca2+ channel antagonist nicardipine (5 microM), but not nifedipine (5 microM), reduced the open probability of the large-conductance L-type Ca2+ channel by shortening the duration (to 0.36 ms) of channel openings. 5. The voltage- and time-dependent properties of these two types of single Ca2+ channel currents are in close agreement with those of the two components of macroscopic Ca2+ currents previously reported using the "whole-terminal" recording method. Therefore these two types of single channels appear to underlie the macroscopic current. 6. Our studies suggest that the terminal Nt-type Ca2+ channel differs from the conventional somatic N- and T-type Ca2+ channels in some respects, and that the terminal L-type Ca2+ channel is similar to the conventional somatic L-type Ca2+ channel.(ABSTRACT TRUNCATED AT 400 WORDS)


2002 ◽  
Vol 120 (3) ◽  
pp. 369-393 ◽  
Author(s):  
Richard J. Prince ◽  
Richard A. Pennington ◽  
Steven M. Sine

We used single-channel kinetic analysis to study the inhibitory effects of tacrine on human adult nicotinic receptors (nAChRs) transiently expressed in HEK 293 cells. Single channel recording from cell-attached patches revealed concentration- and voltage-dependent decreases in mean channel open probability produced by tacrine (IC50 4.6 μM at −70 mV, 1.6 μM at −150 mV). Two main effects of tacrine were apparent in the open- and closed-time distributions. First, the mean channel open time decreased with increasing tacrine concentration in a voltage-dependent manner, strongly suggesting that tacrine acts as an open-channel blocker. Second, tacrine produced a new class of closings whose duration increased with increasing tacrine concentration. Concentration dependence of closed-times is not predicted by sequential models of channel block, suggesting that tacrine blocks the nAChR by an unusual mechanism. To probe tacrine's mechanism of action we fitted a series of kinetic models to our data using maximum likelihood techniques. Models incorporating two tacrine binding sites in the open receptor channel gave dramatically improved fits to our data compared with the classic sequential model, which contains one site. Improved fits relative to the sequential model were also obtained with schemes incorporating a binding site in the closed channel, but only if it is assumed that the channel cannot gate with tacrine bound. Overall, the best description of our data was obtained with a model that combined two binding sites in the open channel with a single site in the closed state of the receptor.


2000 ◽  
Vol 17 (2) ◽  
pp. 197-206 ◽  
Author(s):  
WALLACE B. THORESON ◽  
RON NITZAN ◽  
ROBERT F. MILLER

The present study uses cell-attached patch-recording techniques to study the single-channel properties of Ca2+ channels in isolated salamander photoreceptors and investigate their sensitivity to reductions in intracellular Cl−. The results show that photoreceptor Ca2+ channels possess properties similar to L-type Ca2+ channels in other preparations, including (1) enhancement of openings by the dihydropyridine agonist, (−)BayK8644; (2) suppression by a dihydropyridine antagonist, nisoldipine; (3) single-channel conductance of 22 pS with 82 mM Ba2+ as the charge carrier; (4) mean open probability of 0.1; (5) open-time distribution fit with a single exponential (τ0 = 1.1 ms) consistent with a single open state; and (6) closed time distribution fit with two exponentials (τc1 = 0.7 ms, τc2 = 25.4 ms) consistent with at least two closed states. Using a Cl−-sensitive dye to measure intracellular [Cl−], it was found that perfusion with gluconate-containing, low Cl− medium depleted intracellular [Cl−]. It was therefore possible to reduce intracellular [Cl−] by perfusion with a low Cl− solution while maintaining the extracellular channel surface in high Cl− pipette solution. Under these conditions, the single-channel conductance was unchanged, but the mean open probability fell to 0.03. This reduction can account for the 66% reduction in whole-cell Ca2+ currents produced by perfusion with low Cl− solutions. Examination of the open and closed time distributions suggests that the reduction in open probability arises from increases in closed-state dwell times. Changes in intracellular [Cl−] may thus modulate photoreceptor Ca2+ channels.


Blood ◽  
1997 ◽  
Vol 89 (1) ◽  
pp. 92-100 ◽  
Author(s):  
Joseph Y. Cheung ◽  
Xue-Qian Zhang ◽  
Krister Bokvist ◽  
Douglas L. Tillotson ◽  
Barbara A. Miller

Abstract Erythropoietin (Epo) induces a dose-dependent increase in intracellular free Ca2+ ([Ca2+]i ) in human erythroblasts, which is dependent on extracellular Ca2+ and blocked by high doses of nifedipine or Ni2+. In addition, pretreatment of human erythroblasts with mouse antihuman erythropoietin receptor antibody but not mouse immunopure IgG blocked the Epo-induced [Ca2+]i increase, indicating the specificity of the Ca2+ response to Epo stimulation. In this study, the erythropoietin-regulated calcium channel was identified by single channel recordings. Use of conventional whole cell patch-clamp failed to detect Epo-induced whole cell Ca2+ current. To minimize washout of cytosolic constituents, we next used nystatin perforated patch, but did not find any Epo-induced whole cell Ca2+ current. Using Ba2+ (30 mmol/L) as charge carrier in cell-attached patches, we detected single channels with unitary conductance of 3.2 pS, reversal potential of +72 mV, and whose unitary current (at +10 mV) increased monotonically with increasing Ba2+ concentrations. Channel open probability did not appreciably change over the voltage range (−50 to +30 mV) tested. Epo (2 U/mL) increased both mean open time (from 4.27 ± 0.75 to 11.15 ± 1.80 ms) and open probability (from 0.26 ± 0.06 to 2.56 ± 0.59%) of this Ba2+-permeable channel. Our data strongly support the conclusion that the Epo-induced [Ca2+]i increase in human erythroblasts is mediated via Ca2+ entry through a voltage-independent Ca2+ channel.


2002 ◽  
Vol 120 (4) ◽  
pp. 581-597 ◽  
Author(s):  
Tsukasa Gotow ◽  
Takako Nishi

Light-dependent K+ channels underlying a hyperpolarizing response of one extraocular (simple) photoreceptor, Ip-2 cell, in the marine mollusc Onchidium ganglion were examined using cell-attached and inside-out patch-clamp techniques. A previous report (Gotow, T., T. Nishi, and H. Kijima. 1994. Brain Res. 662:268–272) showed that a depolarizing response of the other simple photoreceptor, A-P-1 cell, results from closing of the light-dependent K+ channels that are activated by cGMP. In the cell-attached patch recordings of Ip-2 cells, external artificial seawater (ASW) was replaced with a modified ASW containing 150 mM K+ and 200 mM Mg2+ to suppress any synaptic input and to maintain the membrane potential constant. When Ip-2 cells were equilibrated with this modified ASW, the internal K+ concentration was estimated to be 260 mM. Light-dependent single-channels in the cell-attached patch on these cells were opened by light but scarcely by voltage. After confirming the light-dependent channel activity in the cell-attached patches, an application of cGMP to the excised inside-out patches newly activated a channel that disappeared on removal of cGMP. Open and closed time distributions of this cGMP-activated channel could be described by the sum of two exponents with time constants τo1, τo2 and τc1, τc2, respectively, similar to those of the light-dependent channel. In both the channels, τo1 and τo2 in ms ranges were similar to each other, although τc2 over tens of millisecond ranges was different. τo1, τo2, and the mean open time τo were both independent of light intensity, cGMP concentration, and voltage. In both channels, the open probability increased as the membrane was depolarized, without changing any of τo2 or τo. In both, the reversal potentials using 200- and 450-mM K+-filled pipettes were close to the K+ equilibrium potentials, suggesting that both the channels are primarily K+ selective. Both the mean values of the channel conductance were estimated to be the same at 62 and 91 pS in 200- and 450-mM K+ pipettes at nearly 0 mV, respectively. Combining these findings with those in the above former report, it is concluded that cGMP is a second messenger which opens the light-dependent K+ channel of Ip-2 to cause hyperpolarization, and that the channel is the same as that of A-P-1 closed by light.


Blood ◽  
1997 ◽  
Vol 89 (1) ◽  
pp. 92-100 ◽  
Author(s):  
Joseph Y. Cheung ◽  
Xue-Qian Zhang ◽  
Krister Bokvist ◽  
Douglas L. Tillotson ◽  
Barbara A. Miller

Erythropoietin (Epo) induces a dose-dependent increase in intracellular free Ca2+ ([Ca2+]i ) in human erythroblasts, which is dependent on extracellular Ca2+ and blocked by high doses of nifedipine or Ni2+. In addition, pretreatment of human erythroblasts with mouse antihuman erythropoietin receptor antibody but not mouse immunopure IgG blocked the Epo-induced [Ca2+]i increase, indicating the specificity of the Ca2+ response to Epo stimulation. In this study, the erythropoietin-regulated calcium channel was identified by single channel recordings. Use of conventional whole cell patch-clamp failed to detect Epo-induced whole cell Ca2+ current. To minimize washout of cytosolic constituents, we next used nystatin perforated patch, but did not find any Epo-induced whole cell Ca2+ current. Using Ba2+ (30 mmol/L) as charge carrier in cell-attached patches, we detected single channels with unitary conductance of 3.2 pS, reversal potential of +72 mV, and whose unitary current (at +10 mV) increased monotonically with increasing Ba2+ concentrations. Channel open probability did not appreciably change over the voltage range (−50 to +30 mV) tested. Epo (2 U/mL) increased both mean open time (from 4.27 ± 0.75 to 11.15 ± 1.80 ms) and open probability (from 0.26 ± 0.06 to 2.56 ± 0.59%) of this Ba2+-permeable channel. Our data strongly support the conclusion that the Epo-induced [Ca2+]i increase in human erythroblasts is mediated via Ca2+ entry through a voltage-independent Ca2+ channel.


2014 ◽  
Vol 145 (1) ◽  
pp. 23-45 ◽  
Author(s):  
Alessandro Marabelli ◽  
Remigijus Lape ◽  
Lucia Sivilotti

Prokaryotic channels, such as Erwinia chrysanthemi ligand-gated ion channel (ELIC) and Gloeobacter violaceus ligand-gated ion channel, give key structural information for the pentameric ligand-gated ion channel family, which includes nicotinic acetylcholine receptors. ELIC, a cationic channel from E. chrysanthemi, is particularly suitable for single-channel recording because of its high conductance. Here, we report on the kinetic properties of ELIC channels expressed in human embryonic kidney 293 cells. Single-channel currents elicited by the full agonist propylamine (0.5–50 mM) in outside-out patches at −60 mV were analyzed by direct maximum likelihood fitting of kinetic schemes to the idealized data. Several mechanisms were tested, and their adequacy was judged by comparing the predictions of the best fit obtained with the observable features of the experimental data. These included open-/shut-time distributions and the time course of macroscopic propylamine-activated currents elicited by fast theta-tube applications (50–600 ms, 1–50 mM, −100 mV). Related eukaryotic channels, such as glycine and nicotinic receptors, when fully liganded open with high efficacy to a single open state, reached via a preopening intermediate. The simplest adequate description of their activation, the “Flip” model, assumes a concerted transition to a single intermediate state at high agonist concentration. In contrast, ELIC open-time distributions at saturating propylamine showed multiple components. Thus, more than one open state must be accessible to the fully liganded channel. The “Primed” model allows opening from multiple fully liganded intermediates. The best fits of this type of model showed that ELIC maximum open probability (99%) is reached when at least two and probably three molecules of agonist have bound to the channel. The overall efficacy with which the fully liganded channel opens was ∼102 (∼20 for α1β glycine channels). The microscopic affinity for the agonist increased as the channel activated, from 7 mM for the resting state to 0.15 mM for the partially activated intermediate state.


Sign in / Sign up

Export Citation Format

Share Document