burst duration
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 25)

H-INDEX

24
(FIVE YEARS 1)

Author(s):  
Sabrina Bendjaballah ◽  
David Le Gac

This article seeks to determine the acoustic correlates of gemination in Standard Somali (Afroasiatic, Cushitic), in particular whether closure duration is the primary acoustic correlate distinguishing singleton and geminate stops, with immediate consequences for the analysis of word-initial strengthening. We provide an acoustic analysis of word-initial and word-internal voiced singletons as well as of their geminate counterparts on the basis of a production experiment conducted with four native speakers. Three temporal and four non-temporal acoustic properties of /b d ɡ/ and /bb dd ɡɡ/ are examined and systematically compared (closure duration, release burst duration, vowel duration; and closure amplitude, release amplitude, presence of a release burst, (de)voicing). We argue that the opposition between singleton and geminate voiced stops is primarily realized as the manner contrast approximant [β̞ ð̞ ɣ̞] vs. stop [b d ɡ]. Word-initially, Somali exhibits various peculiarities that are reminiscent of the cross-linguistically attested phenomenon of domain-initial strengthening. This article provides the first study of this phenomenon in Somali. We establish that word-initial /b d ɡ/ and word-medial /bb dd ɡɡ/ share the same closure duration, release burst duration, and vowel duration within the Prosodic Word. They also have a similar closure amplitude, and voicing properties. Moreover, the acoustic properties of word-initial /b d ɡ/ remain constant, and do not depend on their position in the prosodic hierarchy. On the basis of these results, the article also aims at providing new insights in the phonological representation of Somali geminates and word boundaries, and thus contributes to the understanding of word-initial strengthening in Somali.


2021 ◽  
Vol 10 (6) ◽  
pp. 3736-3739
Author(s):  
Sarvesh Rustagi

The main objective of this study was to understand the technique of Electromyography. In this technique activities of muscles were governed on the basis of generated my electrical signals. Electromyography instrumentation consists of data acquisition unit, Universal interface module, Connector, adaptor and software. Various parameters like chew number, mastication time, total burst duration, total muscle activity, burst duration, inter burst duration, cycle time, muscle activity and amplitude were used for analyzing the data acquired during mastication of food at entire mastication, per chew and at three different stages (early, middle and late) of mastication.


2021 ◽  
Vol 15 ◽  
Author(s):  
Matthias Sure ◽  
Jan Vesper ◽  
Alfons Schnitzler ◽  
Esther Florin

In Parkinson’s disease (PD), subthalamic nucleus (STN) beta burst activity is pathologically elevated. These bursts are reduced by dopamine and deep brain stimulation (DBS). Therefore, these bursts have been tested as a trigger for closed-loop DBS. To provide better targeted parameters for closed-loop stimulation, we investigate the spatial distribution of beta bursts within the STN and if they are specific to a beta sub-band. Local field potentials (LFP) were acquired in the STN of 27 PD patients while resting. Based on the orientation of segmented DBS electrodes, the LFPs were classified as anterior, postero-medial, and postero-lateral. Each recording lasted 30 min with (ON) and without (OFF) dopamine. Bursts were detected in three frequency bands: ±3 Hz around the individual beta peak frequency, low beta band (lBB), and high beta band (hBB). Medication reduced the duration and the number of bursts per minute but not the amplitude of the beta bursts. The burst amplitude was spatially modulated, while the burst duration and rate were frequency dependent. Furthermore, the hBB burst duration was positively correlated with the akinetic-rigid UPDRS III subscore. Overall, these findings on differential dopaminergic modulation of beta burst parameters suggest that hBB burst duration is a promising target for closed-loop stimulation and that burst parameters could guide DBS programming.


2021 ◽  
Vol 17 (7) ◽  
pp. e1009116
Author(s):  
Benoit Duchet ◽  
Filippo Ghezzi ◽  
Gihan Weerasinghe ◽  
Gerd Tinkhauser ◽  
Andrea A. Kühn ◽  
...  

Parkinson’s disease motor symptoms are associated with an increase in subthalamic nucleus beta band oscillatory power. However, these oscillations are phasic, and there is a growing body of evidence suggesting that beta burst duration may be of critical importance to motor symptoms. This makes insights into the dynamics of beta bursting generation valuable, in particular to refine closed-loop deep brain stimulation in Parkinson’s disease. In this study, we ask the question “Can average burst duration reveal how dynamics change between the ON and OFF medication states?”. Our analysis of local field potentials from the subthalamic nucleus demonstrates using linear surrogates that the system generating beta oscillations is more likely to act in a non-linear regime OFF medication and that the change in a non-linearity measure is correlated with motor impairment. In addition, we pinpoint the simplest dynamical changes that could be responsible for changes in the temporal patterning of beta oscillations between medication states by fitting to data biologically inspired models, and simpler beta envelope models. Finally, we show that the non-linearity can be directly extracted from average burst duration profiles under the assumption of constant noise in envelope models. This reveals that average burst duration profiles provide a window into burst dynamics, which may underlie the success of burst duration as a biomarker. In summary, we demonstrate a relationship between average burst duration profiles, dynamics of the system generating beta oscillations, and motor impairment, which puts us in a better position to understand the pathology and improve therapies such as deep brain stimulation.


Author(s):  
Hung-Shao Cheng ◽  
Adam Buchwald

Purpose Previous studies have demonstrated that speakers can learn novel speech sequences, although the content and specificity of the learned speech motor representations remain incompletely understood. We investigated these representations by examining transfer of learning in the context of nonnative consonant clusters. Specifically, we investigated whether American English speakers who learn to produce either voiced or voiceless stop–stop clusters (e.g., /gd/ or /kt/) exhibit transfer to the other voicing pattern. Method Each participant ( n = 34) was trained on disyllabic nonwords beginning with either voiced (/gd/, /db/, /gb/) or voiceless (/kt/, /kp/, /tp/) onset consonant clusters (e.g., /gdimu/, /ktaksnæm/) in a practice-based speech motor learning paradigm. All participants were tested on both voiced and voiceless clusters at baseline (prior to practice) and in two retention sessions (20 min and 2 days after practice). We compared changes in cluster accuracy and burst-to-burst duration between baseline and each retention session to evaluate learning (performance on the trained clusters) and transfer (performance on the untrained clusters). Results Participants in both training conditions improved with respect to cluster accuracy and burst-to-burst duration for the clusters they practiced on. A bidirectional transfer pattern was found, such that participants also improved the cluster accuracy and burst-to-burst duration for the clusters with the other untrained voicing pattern. Post hoc analyses also revealed that improvement in the production of untrained stop–fricative clusters that originally were added as filler items. Conclusion Our findings suggest the learned speech motor representations may encode the information about the coordination of oral articulators for stop–stop clusters independently from information about the coordination of oral and laryngeal articulators.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250529
Author(s):  
Elizabeth Heller Murray ◽  
Joanna Lewis ◽  
Emily Zimmerman

The variability of a child’s voice onset time (VOT) decreases during development as they learn to coordinate upper vocal tract and laryngeal articulatory gestures. Yet, little is known about the relationship between VOT and other early motor tasks. The aims of this study were to evaluate the relationship between infant vocalization and another early oromotor task, non-nutritive suck (NNS). Twenty-five full-term infants (11 male, 14 female) completed this study. NNS was measured with a customized pacifier at 3 months to evaluate this early reflex. Measures of mean VOT and variability of VOT (measured via coefficient of variation) were collected from 12-month-old infants using a Language Environmental Analysis device. Variability of VOTs at 12 months was significantly related to NNS measures at 3-months. Increased VOT variability was primarily driven by increased NNS intraburst frequency and increased NNS burst duration. There were no relationships between average VOT or range of VOT and NNS measures. Findings from this pilot study indicate a relationship between NNS measures of intraburst frequency and burst duration and VOT variability. Infants with increased NNS intraburst frequency and NNS burst duration had increased VOT variability, suggesting a relationship between the development of VOT and NNS in the first year of life. Future work is needed to continue to examine the relationship between these early oromotor actions and to evaluate how this may impact later speech development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ann L. Revill ◽  
Alexis Katzell ◽  
Christopher A. Del Negro ◽  
William K. Milsom ◽  
Gregory D. Funk

The pre-Bötzinger complex (preBötC) of the ventral medulla generates the mammalian inspiratory breathing rhythm. When isolated in explants and deprived of synaptic inhibition, the preBötC continues to generate inspiratory-related rhythm. Mechanisms underlying burst generation have been investigated for decades, but cellular and synaptic mechanisms responsible for burst termination have received less attention. KCNQ-mediated K+ currents contribute to burst termination in other systems, and their transcripts are expressed in preBötC neurons. Therefore, we tested the hypothesis that KCNQ channels also contribute to burst termination in the preBötC. We recorded KCNQ-like currents in preBötC inspiratory neurons in neonatal rat slices that retain respiratory rhythmicity. Blocking KCNQ channels with XE991 or linopirdine (applied via superfusion or locally) increased inspiratory burst duration by 2- to 3-fold. By contrast, activation of KCNQ with retigabine decreased inspiratory burst duration by ~35%. These data from reduced preparations suggest that the KCNQ current in preBötC neurons contributes to inspiratory burst termination.


2021 ◽  
Author(s):  
Yuxi Zhang ◽  
Xiao Tao ◽  
Roderick MacKinnon

AbstractInward rectifier K+(Kir) channels regulate cell membrane potential. Different Kir channels respond to unique ligands, but all are regulated by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). Using planar lipid bilayers we show that Kir2.2 exhibits bursts of openings separated by long quiescent inter-burst periods. Increasing PI(4,5)P2 concentration shortens the Kir2.2 inter-burst duration and lengthens the burst duration without affecting dwell times within a burst. From this, we propose that burst and inter-burst durations correspond to the CTD-docked and CTD-undocked conformations observed in the presence and absence of PI(4,5)P2 in atomic structures. We also studied the effect of different phosphatidylinositol lipids on Kir2.2 activation and conclude that the 5’ phosphate is essential to Kir2.2 pore opening. Other phosphatidylinositol lipids can compete with PI(4,5)P2 but cannot activate Kir2.2 without the 5’ phosphate. PI(4)P, which is directly interconvertible to and from PI(4,5)P2, might thus be a regulator of Kir channels in the plasma membrane.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 769
Author(s):  
Kate S. Early ◽  
Nathan P. Lemoine ◽  
Annie Simoneaux ◽  
Shelly Mullenix ◽  
Jack Marucci ◽  
...  

This study aimed to describe the physical demands of American football players using novel performance analysis techniques. Heart rate (HR) and accelerometer-based activity levels were observed across two pre-season scrimmages in 23 Division I collegiate football players (age: 19 ± 1 y, height: 1.90 ± 0.06 m, weight: 116.2 ± 19.4 kg). Data were analyzed using a MATLAB program and inter-rater reproducibility assessed using inter-class correlations (ICC). Players were analyzed by side (offense/defense) and position (skill/non-skill). Performance variables assessed in bursts of activity included burst duration, HRmean and HRmax (bpm), and mean activity (vector magnitude units [vmu]). Exercise intensity was categorized as time spent in % HRmax in 5% increments. The burst duration (8.1±3.9 min, ICC = 0.72), HRmean (157 ± 12 bpm, ICC = 0.96) and mean activity (0.30 ± 0.05 vmu, ICC = 0.86) were reproducible. HRmean (p = 0.05) and HRmax (p = 0.001) were greater on defense. Offense spent more time at 65–70% HRmax (p = 0.01), 70–75% HRmax (p = 0.02) while defense spent more time 90–95% HRmax and ≥95% HRmax (p = 0.03). HRmean (p = 0.70) and HRpeak (p = 0.80) were not different between positions across both sides. Skilled players demonstrated greater mean activity (p = 0.02). The sport-specific analysis described HR and activity level in a reproducible manner. Automated methods of assessing HR may be useful in training and game time performance but ultimately provides support to coaching decision making.


2021 ◽  
pp. 137-153
Author(s):  
Sergey V. Knyazev ◽  

The paper reports new data obtained in the experimental study of voice coarticulation of voiced and voiceless obstruents adjacent to sonorant depending on the place and manner of articulation of these consonants in Standard Modern Russian. The experimental results revealed the voice coarticulation of the obstruent in word-internal clusters of [sonorant + obstruent + sonorant] coronal consonants, possibly due to the preceding homorganic nasal consonant. In the case of sonorants [nasal + voiceless stop + vibrant] that are not identical in place and manner of articulation, the closure part of the dental stop becomes voiced throughout, with this phonation type accommodation not leading, nevertheless, to the voiced / voiceless phoneme neutralization since the contrast in question is still maintained by phonetic parameters other than voice (phonation itself). These are closure duration, burst duration, and relative overall intensity. On the contrary, in the case of dental sonorants [nasal + voiceless stop + nasal] being identical in place and manner of articulation, the contrast in burst duration is eliminated since no burst of dental stop is found in the position before homorganic nasal, with the closure part of the stop not acquiring voicing to prevent the voiced / voiceless phoneme neutralization. In conclusion, it is argued that in Standard Modern Russian, the phonetic parameter [relative overall intensity] is less significant in the hierarchical structure of distinctive phonological feature than [closure voicing] and [burst duration] ones since it cannot serve as the only parameter distinguishing the voiced and voiceless obstruents in the intersonorant position.


Sign in / Sign up

Export Citation Format

Share Document