Desflurane-induced Preconditioning against Myocardial Infarction Is Mediated by Nitric Oxide

2006 ◽  
Vol 105 (4) ◽  
pp. 719-725 ◽  
Author(s):  
Thorsten M. Smul ◽  
Markus Lange ◽  
Andreas Redel ◽  
Natalie Burkhard ◽  
Norbert Roewer ◽  
...  

Background Volatile anesthetics induce myocardial preconditioning through a signal transduction pathway that is remarkably similar to that observed during ischemic preconditioning. Nitric oxide-dependent signaling plays an important role in anesthetic and ischemic preconditioning. Therefore, the authors tested the hypothesis that desflurane-induced preconditioning is mediated by nitric oxide. Methods Barbiturate-anesthetized rabbits were instrumented for measurement of hemodynamics. All rabbits were subjected to 30-min coronary artery occlusion followed by 3 h of reperfusion. Myocardial infarct size was assessed with triphenyltetrazolium chloride staining. Myocardial nitric oxide synthase activity was assessed with a [H]L-arginine-conversion assay. Rabbits were randomized to five separate experimental groups. They received 0.0 or 1.0 minimum alveolar concentration desflurane for 30 min, which was discontinued 30 min before ischemia in the absence or presence of the nitric oxide synthase inhibitor N-nitro-L-arginine (L-NA). L-NA was given either 20 min before or 10 min after desflurane administration, respectively. Data are mean +/- SEM. Results Infarct size was 56 +/- 8% in control experiments. Desflurane significantly (P < 0.05) reduced infarct size to 35 +/- 4%. Preconditioning by desflurane was totally blocked by administration of L-NA either during or after desflurane inhalation (58 +/- 4 and 59 +/- 9%, respectively). L-NA alone had no effect on infarct size (56 +/- 7%). Nitric oxide synthase activity was significantly (P < 0.05) increased by desflurane. Conclusion The results demonstrate that desflurane-induced preconditioning markedly reduced myocardial infarct size. This beneficial effect was blocked by the nitric oxide synthase inhibitor L-NA either during or after desflurane-administration. These data suggest that early desflurane-induced preconditioning is mediated by nitric oxide.

2010 ◽  
Vol 298 (4) ◽  
pp. H1198-H1208 ◽  
Author(s):  
Kyle T. Keyes ◽  
Jing Xu ◽  
Bo Long ◽  
Congfang Zhang ◽  
Zhaoyong Hu ◽  
...  

Phosphoinositide 3-kinase (PI3K) mediates myocardium protective signaling through phosphorylation of phosphatidylinositol (Ptdins) to produce Ptdins(3,4,5)P3. Lipid phosphatase and tensin homolog on chromosome 10 (PTEN) antagonizes PI3K activity by dephosphorylating Ptdins(3,4,5)P3; therefore, the inhibition of PTEN enhances PI3K/Akt signaling and could prevent myocardium from ischemia-reperfusion (I/R) injury. Here we studied 1) whether the pharmacological inhibition of PTEN by bisperoxovanadium molecules [BpV(HOpic)] attenuates simulated I/R (SIR) injury in vitro and 2) whether the administration of BpV(HOpic) either before or after ischemia limits myocardial infarct size (IS) and ameliorates cardiodysfunction caused by infarction. First, adult rat cardiomyocytes were treated with or without BpV(HOpic) and then exposure to SIR. Second, anesthetized rats received BpV(HOpic) either before or after ischemia. IS was assessed at 4 h reperfusion, and left ventricular function was evaluated by echocardiography at 28 days postreperfusion. As a result, BpV(HOpic) decreased cell death, improved 3-[4,5-yl]-2,5-diphenyltetrazolium bromide (MTT) viability, and reduced apoptosis in cells exposed to SIR. These protective effects of BpV(HOpic) are associated with increased phospho-Akt and the repression of caspase-3 activity. Second, the administration of BpV(HOpic) significantly reduced IS and suppressed caspase-3 activity following I/R injury and consequentially improved cardiac function at 28 day postinfarction. These beneficial effects of BpV(HOpic) are attributed to increases in myocardial levels of phosphorylation of Akt/endothelial nitric oxide synthase (eNOS), ERK-1/2, and calcium-dependent nitric oxide synthase activity. In conclusion, the pharmacological inhibition of PTEN protects against I/R injury through the upregulation of the PI3K/Akt/eNOS/ERK prosurvival pathway, suggesting a new therapeutic strategy to combat I/R injury.


1995 ◽  
Vol 268 (6) ◽  
pp. F1004-F1008 ◽  
Author(s):  
F. B. Gabbai ◽  
S. C. Thomson ◽  
O. Peterson ◽  
L. Wead ◽  
K. Malvey ◽  
...  

Endothelium-dependent nitric oxide (EDNO) exerts control over the processes of glomerular filtration and tubular reabsorption. The importance of the renal nerves to the tonic influence of EDNO in the glomerular microcirculation and proximal tubule was tested by renal micropuncture in euvolemic adult male Munich-Wistar rats. The physical determinants of glomerular filtration and proximal reabsorption were assessed before and during administration of the nitric oxide synthase inhibitor, NG-monomethyl-L-arginine (L-NMMA), in control animals and in animals 5–9 days after either ipsilateral surgical renal denervation (DNX) or after either sham surgery (SHX). L-NMMA caused single-nephron glomerular filtration rate to decline in control and SHX animals but not in DNX rats. L-NMMA caused a reduction in proximal reabsorption in control and SHX rats, which was prevented by prior DNX. DNX did not alter urinary guanosine 3',5'-cyclic monophosphate excretion, and, although DNX upregulates glomerular angiotensin II (ANG II) receptors, prior DNX did not alter intrarenal ANG II content as evaluated by radioimmunoassay. Some component of renal adrenergic activity is required for the full expression of the glomerular and tubular effects of blockade of nitric oxide synthase.


2010 ◽  
Vol 113 (6) ◽  
pp. 1376-1384 ◽  
Author(s):  
Matthias Lange ◽  
Atsumori Hamahata ◽  
Daniel L. Traber ◽  
Yoshimitsu Nakano ◽  
Aimalohi Esechie ◽  
...  

Background Recent evidence suggests that nitric oxide produced via the neuronal nitric oxide synthase is involved mainly in the early response to sepsis, whereas nitric oxide derived from the inducible nitric oxide synthase is responsible during the later phase. We hypothesized that early neuronal and delayed inducible nitric oxide synthase blockade attenuates multiple organ dysfunctions during sepsis. Methods Sheep were randomly allocated to sham-injured, nontreated animals (n = 6); injured (48 breaths of cotton smoke and instillation of Pseudomonas aeruginosa into the lungs), nontreated animals (n = 7); and injured animals treated with a neuronal nitric oxide synthase inhibitor from 1 to 12 h and an inducible nitric oxide synthase inhibitor from 12 to 24 h postinjury (n = 6). Results The injury induced arterial hypotension, vascular leakage, myocardial depression, and signs of renal and hepatic dysfunctions. The treatment significantly attenuated, but did not fully prevent, the decreases in mean arterial pressure and left ventricular stroke work index. Although the elevation of creatinine levels was partially prevented, the decreases in urine output and creatinine clearance were not affected. The injury-related increases in bilirubin levels, international normalized ratio, and lipid peroxidation in liver tissue were significantly attenuated. Although plasma nitrite/nitrate levels were significantly increased versus baseline from 12-24 h in controls, plasma nitrite/nitrate levels were not increased in treated animals. Conclusions The combination treatment shows potential benefit on sepsis-related arterial hypotension and surrogate parameters of organ dysfunctions in sheep. It may be crucial to identify the time course of expression and activation of different nitric oxide synthase isoforms in future investigations.


Sign in / Sign up

Export Citation Format

Share Document