OPTIMIZED DESIGN OF A THORACIC ARTIFICIAL LUNG USING COMPUTATIONAL FLUID DYNAMICS

ASAIO Journal ◽  
2005 ◽  
Vol 51 (2) ◽  
pp. 50A
Author(s):  
Jeongho Kim ◽  
Keith E Cook
2005 ◽  
Author(s):  
Vincent G. Chapin ◽  
Romaric Neyhousser ◽  
Stephane Jamme ◽  
Guillaume Dulliand ◽  
Patrick Chassaing

In this paper we propose a rational viscous Computational Fluid Dynamics (CFD) methodology applied to sailing yacht rig aerodynamic design and analysis. After an outlook of present challenges in high speed sailing, we emphasized the necessity of innovation and CFD to conceive, validate and optimize new aero-hydrodynamic concepts. Then, we present our CFD methodology through CAD, mesh generation, numerical and physical modelling choices, and their validation on typical rig configurations through wind-tunnel test comparisons. The methodology defined, we illustrate the relevance and wide potential of advanced numerical tools to investigate sailing yacht rig design questions like the relation between sail camber, propulsive force and aerodynamic finesse, and like the mast-mainsail non linear interaction. Through these examples, it is shown how sailing yacht rig improvements may be drawn by using viscous CFD based on Reynolds Averaged Navier-Stokes equations (RANS). Then the extensive use of viscous CFD, rather than wind-tunnel tests on scale models, for the evaluation or ranking of improved designs with increased time savings. Viscous CFD methodology is used on a preliminary study of the complex and largely unknown Yves Parlier Hydraplaneur double rig. We show how it is possible to increase our understanding of his flow physics with strong sail interactions, and we hope this methodology will open new roads toward optimized design. Throughout the paper, the necessary comparison between CFD and wind-tunnel test will be presented to focus on limitations and drawbacks of viscous CFD tools, and to address future improvements.


2013 ◽  
Vol 378 ◽  
pp. 69-73
Author(s):  
Chen Fang Cai ◽  
Yong Ming Qin ◽  
Jiang Hao Wu

The effect of Belly-flap on aerodynamic performance of BWB civil aircraft are investigated in take-off and landing by computational fluid dynamics. And the overload of BWB with Belly-flap also is calculated in the same flight condition. Six parameters are discussed as design parameters of the Belly flap. It is shown that the proper combination of design parameters of Belly-flap can increase the maximum of lift and reduce the angle of attack and nose down moment to improve the flight safety in take-off and landing. When the aircraft with Belly-flap encounters the gust, the maximum overload is very close to 2.5 which are requested by FAR. It is suggested the optimized design of Belly-flap should be done if the Belly-flap is applied in BWB civil aircraft.


2010 ◽  
Vol 132 (8) ◽  
Author(s):  
Fu-Hung Hsu ◽  
Roger L. Davis

Tractor-trailers have a higher drag coefficient than other vehicles due to their bluff-body shape. Numerous add-on devices have been invented to help reduce drag and fuel consumption. The current research extends our previous idea of add-on humps and investigates their effect in conjunction with curved boat-tail flaps. Computational fluid dynamics in the form of unsteady Reynolds-averaged Navier–Stokes and detached-eddy simulations were used to determine viable design strategies. A 3D baseline computational model was constructed using an Ahmed body. Design optimization was applied on the new add-on devices. The results from the optimized design were shown to have a 50.9% reduction in drag coefficient.


2011 ◽  
Vol 40 (3) ◽  
pp. 628-636 ◽  
Author(s):  
Rebecca E. Schewe ◽  
Khalil M. Khanafer ◽  
Ryan A. Orizondo ◽  
Keith E. Cook

Author(s):  
Gi-Beum Kim ◽  
Mun-Yong Lee ◽  
Seol-Hee Jeon ◽  
Md. Mizanur Rahman ◽  
Woo-Suk Chong ◽  
...  

Author(s):  
Taku Iwase ◽  
Kazuyuki Sugimura ◽  
Ryuuichi Shimada

We developed a technique for designing forward curved bladed fans using computational fluid dynamics (CFD) and numerical optimization. The target is a forward curved bladed fan including an impeller with blades and a volute casing. In our research, we developed a two-step calculation method with a blade-to-blade grid model and a full grid model. Using these models individually according to purpose, we reduced the design time by one quarter. An automatic grid-generation program that was developed in-house generated the grids for the CFD calculation. The fan performance was calculated using commercial CFD software based on an incompressible Reynolds-averaged Navier-Stokes (RANS) solver. For numerical optimization, we used a simulated annealing algorithm (SA) to determine the optimized design variables. Using the developed technique, we attempted to minimize the total pressure loss of an impeller and a suction cone. We could obtain the optimized design variables: the gap between the impeller and suction cone, the inside diameter of the shroud rim cover and the number of blades. Our results demonstrated that the optimized fan design had smaller shaft power than the initial design, especially at the low flow rate. Clearly therefore, our technique is capable of designing an energy saving fan in a short time. Moreover, it was found that that the leak flow between the impeller and suction cone of the optimized fan was suppressed. The change in these design variables contributed to this suppression.


Sign in / Sign up

Export Citation Format

Share Document