Arterial Pressure and Renal Function in Two-Kidney, One Clip Goldblatt Hypertensive Rats Maintained on a High-Salt Intake

1986 ◽  
Vol 4 (2) ◽  
pp. 215-221 ◽  
Author(s):  
Cynthia Ann Jackson ◽  
L Gabriel Navar
2008 ◽  
Vol 294 (4) ◽  
pp. R1227-R1233 ◽  
Author(s):  
Karen J. Gibson ◽  
Amanda C. Boyce ◽  
Clare L. Thomson ◽  
Sarah Chinchen ◽  
Eugenie R. Lumbers

The effects of high salt intake on blood pressure and renal function were studied in nine subtotally nephrectomized pregnant ewes (STNxP) and seven intact pregnant ewes (IntP) in late gestation and in eight subtotally nephrectomized nonpregnant ewes (STNxNP) and seven intact nonpregnant ewes (IntNP). STNxP had higher mean arterial pressures ( P < 0.02) and plasma creatinine levels ( P < 0.001) than IntP. High salt (0.17 M NaCl as drinking water for 5 days) did not change blood pressure in either STNxP or IntP. STNxNP had higher mean arterial pressures ( P = 0.03) and plasma creatinine levels ( P < 0.001) than IntNP. In STNxNP, blood pressure increased with high salt intake and there was a positive relationship between diastolic pressure and sodium balance ( r = 0.497, P = 0.05). This relationship was not present in IntNP, STNxP, or IntP. Because high salt intake did not cause an increase in blood pressure in STNxP, it is concluded that they were protected by pregnancy from further rises in blood pressure. The observed increase in glomerular filtration rate ( P < 0.03) and depression of fractional proximal sodium reabsorption ( P = 0.003) that occurred in STNxP, but not in STNxNP, in response to high salt may have contributed to this protection. As well, the increased production of vasorelaxants in pregnancy may selectively protect against the occurrence of salt-sensitive hypertension in pregnancy.


Author(s):  
Yusuke Nagatani ◽  
Toshihide Higashino ◽  
Kosho Kinoshita ◽  
Hideaki Higashino

Background. Epidemiological and clinical studies demonstrated that excessive salt intake causes severe hypertension and exacerbated organ derangement such as chronic kidney disease (CKD). In this study, we focused on evaluating histological and gene-expression findings in the kidney using stroke-prone spontaneously hypertensive rats (SHRSP) with high-salt intake and thromboxane A2/ prostaglandin H2 receptor (TPR) blocker ONO-8809. Methods. SHRSP aged 6 weeks were divided into three groups eating normal chow containing 0.4% NaCl, 2.0%NaCl, or 2.0%NaCl +ONO-8809 (0.6mg/kg p.o. daily). Histological analyses with immunohistochemistry and a gene-expression assay with a DNA kidney microarray were performed after 8 weeks. Results. The following changes were observed with high-salt intake. Glomerular sclerotic changes were remarkably observed in the juxtaglomerular cortex areas. ED1, MCP-1, nitrotyrosine, and HIF-1&alpha; staining areas were increased in the glomeruli and interstitial portion. Tbxa2r which encodes TPR, Prcp, and Car7 were significantly underexpressed in the kidney. The plasma 8-isoprostane level was significantly elevated, and was attenuated with ONO-8809 treatment. Conclusion. TXA2 and oxidative stresses exaggerated renal dysfunction in salt-loading SHRSP, and ONO-8809 as a TPR blocker suppressed these changes. Therefore, ONO-8809 is a candidate drug to prevent CKD for hypertensive patients associated with high-salt intake.


Sign in / Sign up

Export Citation Format

Share Document