oxidative stresses
Recently Published Documents


TOTAL DOCUMENTS

379
(FIVE YEARS 140)

H-INDEX

47
(FIVE YEARS 5)

Zygote ◽  
2022 ◽  
pp. 1-4
Author(s):  
Giuliana A. Ferronato ◽  
Joao A. Alvarado-Rincón ◽  
Andressa S. Maffi ◽  
Antônio A. Barbosa ◽  
Bernardo G. Gasperin ◽  
...  

Summary Lipopolysaccharide (LPS) endotoxemia has been negatively associated with fertility. This study aimed to investigate the effect of LPS-induced inflammation on gene expression associated with bovine fertility in the uterus and oviduct. Sixteen healthy heifers were divided into two groups. The LPS group (n = 8) received two intravenous (i.v.) injections of 0.5 µg/kg of body weight of LPS with a 24-h interval, and the control group (n = 8) received two i.v. injections of saline solution with the same interval of time. All the animals had the follicular wave synchronized. Three days after the second injection of LPS, all animals were slaughtered and uterine and oviduct samples were collected. Gene expression associated with inflammatory response, thermal and oxidative stresses, oviduct environment quality, and uterine environment quality was evaluated. Body temperature and leucogram demonstrated that LPS induced an acute systemic inflammatory response. In the uterus, the expression of PTGS2 and NANOG genes was downregulated by the LPS challenge. However, no change in expression was observed in the other evaluated genes in the uterus, nor those evaluated in the oviduct. In conclusion, the inflammatory process triggered by LPS did not persist in the uterus and oviduct 3 days after challenge with LPS. Nonetheless, reduction in PTGS2 and NANOG expression in the uterus suggested that, indirectly, LPS may have a prolonged effect, which may affect corpus luteum and endometrial functions.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 438
Author(s):  
Xinxin Tong ◽  
Jinlin Guo

Ophiocordyceps sinensis, an ascomycete caterpillar fungus, has been used as a Traditional Chinese Medicine owing to its bioactive properties. However, until now the bio-active peptides have not been identified in this fungus. Here, the raw RNA sequences of three crucial growth stages of the artificially cultivated O. sinensis and the wild-grown mature fruit-body were aligned to the genome of O. sinensis. Both homology-based prediction and de novo-based prediction methods were used to identify 8541 putative antioxidant peptides (pAOPs). The expression profiles of the cultivated mature fruiting body were similar to those found in the wild specimens. The differential expression of 1008 pAOPs matched genes had the highest difference between ST and MF, suggesting that the pAOPs were primarily induced and play important roles in the process of the fruit-body maturation. Gene ontology analysis showed that most of pAOPs matched genes were enriched in terms of ‘cell redox homeostasis’, ‘response to oxidative stresses’, ‘catalase activity’, and ‘ integral component of cell membrane’. A total of 1655 pAOPs was identified in our protein-seqs, and some crucial pAOPs were selected, including catalase, peroxiredoxin, and SOD [Cu–Zn]. Our findings offer the first identification of the active peptide ingredients in O. sinensis, facilitating the discovery of anti-infectious bio-activity and the understanding of the roles of AOPs in fungal pathogenicity and the high-altitude adaptation in this medicinal fungus.


2022 ◽  
Vol 12 ◽  
Author(s):  
Laibin Ren ◽  
Lingwei Wang ◽  
Markus Rehberg ◽  
Tobias Stoeger ◽  
Jianglin Zhang ◽  
...  

Quantum dots (QDs), are one kind of nanoscale semiconductor crystals with specific electronic and optical properties, offering near-infrared mission and chemically active surfaces. Increasing interest for QDs exists in developing theranostics platforms for bioapplications such as imaging, drug delivery and therapy. Here we summarized QDs’ biomedical applications, toxicity, and immunological effects on the respiratory system. Bioapplications of QDs in lung include biomedical imaging, drug delivery, bio-sensing or diagnosis and therapy. Generically, toxic effects of nanoparticles are related to the generation of oxidative stresses with subsequent DNA damage and decreased lung cells viability in vitro and in vivo because of release of toxic metal ions or the features of QDs like its surface charge. Lastly, pulmonary immunological effects of QDs mainly include proinflammatory cytokines release and recruiting innate leukocytes or adaptive T cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qian Liu ◽  
Guang-rui Dong ◽  
Yu-qing Ma ◽  
Shu-man Zhao ◽  
Xi Liu ◽  
...  

Drought is one of the most important environmental constraints affecting plant growth and development and ultimately leads to yield loss. Uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs) are believed to play key roles in coping with environmental stresses. In rice, it is estimated that there are more than 200 UGT genes. However, most of them have not been identified as their physiological significance. In this study, we reported the characterization of a putative glycosyltransferase gene UGT85E1 in rice. UGT85E1 gene is significantly upregulated by drought stress and abscisic acid (ABA) treatment. The overexpression of UGT85E1 led to an enhanced tolerance in transgenic rice plants to drought stress, while the ugt85e1 mutants of rice showed a more sensitive phenotype to drought stress. Further studies indicated that UGT85E1 overexpression induced ABA accumulation, stomatal closure, enhanced reactive oxygen species (ROS) scavenging capacity, increased proline and sugar contents, and upregulated expression of stress-related genes under drought stress conditions. Moreover, when UGT85E1 was ectopically overexpressed in Arabidopsis, the transgenic plants showed increased tolerance to drought as well as in rice. Our findings suggest that UGT85E1 plays an important role in mediating plant response to drought and oxidative stresses. This work may provide a promising candidate gene for cultivating drought-tolerant crops both in dicots and monocots.


2021 ◽  
Vol 7 (12) ◽  
pp. 1053
Author(s):  
Panpan Zhu ◽  
Shuai Zhang ◽  
Ruolan Li ◽  
Changying Liu ◽  
Wei Fan ◽  
...  

Hypertrophy sorosis scleroteniosis caused by Ciboria shiraiana is the most devastating disease of mulberry fruit. However, few mulberry lines show any resistance to C. shiraiana. An increasing amount of research has shown that host-induced gene silencing (HIGS) is an effective strategy for enhancing plant tolerance to pathogens by silencing genes required for their pathogenicity. In this study, two G protein α subunit genes, CsGPA1 and CsGPA2, were identified from C. shiraiana. Silencing CsGPA1 and CsGPA2 had no effect on hyphal growth but reduced the number of sclerotia and increased the single sclerotium weight. Moreover, silencing CsGpa1 resulted in increased fungal resistance to osmotic and oxidative stresses. Compared with wild-type and empty vector strains, the number of appressoria was clearly lower in CsGPA1-silenced strains. Importantly, infection assays revealed that the virulence of CsGPA1-silenced strains was significantly reduced, which was accompanied by formation of fewer appressoria and decreased expression of several cAMP/PKA- or mitogen-activated protein-kinase-related genes. Additionally, transgenic Nicotiana benthamiana expressing double-stranded RNA targeted to CsGpa1 through the HIGS method significantly improved resistance to C. shiraiana. Our results indicate that CsGpa1 is an important regulator in appressoria formation and the pathogenicity of C. shiraiana. CsGpa1 is an efficient target to improve tolerance to C. shiraiana using HIGS technology.


2021 ◽  
Vol 13 ◽  
Author(s):  
Fa Lin ◽  
Runting Li ◽  
Wen-Jun Tu ◽  
Yu Chen ◽  
Ke Wang ◽  
...  

The main reasons for disability and death in aneurysmal subarachnoid hemorrhage (aSAH) may be early brain injury (EBI) and delayed cerebral ischemia (DCI). Despite studies reporting and progressing when DCI is well-treated clinically, the prognosis is not well-improved. According to the present situation, we regard EBI as the main target of future studies, and one of the key phenotype-oxidative stresses may be called for attention in EBI after laboratory subarachnoid hemorrhage (SAH). We summarized the research progress and updated the literature that has been published about the relationship between experimental and clinical SAH-induced EBI and oxidative stress (OS) in PubMed from January 2016 to June 2021. Many signaling pathways are related to the mechanism of OS in EBI after SAH. Several antioxidative stress drugs were studied and showed a protective response against EBI after SAH. The systematical study of antioxidative stress in EBI after laboratory and clinical SAH may supply us with new therapies about SAH.


2021 ◽  
Vol 11 (23) ◽  
pp. 11442
Author(s):  
Massimiliano Rossi ◽  
Ilaria Borromeo ◽  
Concetta Capo ◽  
Bernard R. Glick ◽  
Maddalena Del Gallo ◽  
...  

Soil salinization, one of the most common causes of soil degradation, negatively affects plant growth, reproduction, and yield in plants. Saline conditions elicit some physiological changes to cope with the imposed osmotic and oxidative stresses. Inoculation of plants with some bacterial species that stimulate their growth, i.e., plant growth-promoting bacteria (PGPB), may help plants to counteract saline stress, thus improving the plant’s fitness. This manuscript reports the effects of the inoculation of a salt-sensitive cultivar of Brassica napus (canola) with five different PGPB species (separately), i.e., Azospirillum brasilense, Arthrobacter globiformis, Burkholderia ambifaria, Herbaspirillum seropedicae, and Pseudomonas sp. on plant salt stress physiological responses. The seeds were sown in saline soil (8 dS/m) and inoculated with bacterial suspensions. Seedlings were grown to the phenological stage of rosetta, when morphological and physiological features were determined. In the presence of the above-mentioned PGPB, salt exposed canola plants grew better than non-inoculated controls. The water loss was reduced in inoculated plants under saline conditions, due to a low level of membrane damage and the enhanced synthesis of the osmolyte proline, the latter depending on the bacterial strain inoculated. The reduction in membrane damage was also due to the increased antioxidant activity (i.e., higher amount of phenolic compounds, enhanced superoxide dismutase, and ascorbate peroxidase activities) in salt-stressed and inoculated Brassica napus. Furthermore, the salt-stressed and inoculated plants did not show detrimental effects to their photosynthetic apparatus, i.e., higher efficiency of PSII and low energy dissipation by heat for photosynthesis were detected. The improvement of the response to salt stress provided by PGPB paves the way to further use of PGPB as inoculants of plants grown in saline soils.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiaoqing Feng ◽  
Qian Ma

Abstract Background Although selenium (Se) plays important roles in scavenging free radicals, alleviating oxidative stresses, and strengthening immune system, the knowledge about Se responses in bread wheat is still limited. In order to clarify the molecular mechanism of Se responses in bread wheat, 2-week-old wheat seedlings of cultivar ‘Jimai22’ treated with 10 μM disodium selenate (Na2SeO4) for 0, 3, and 24 h were collected and analyzed by transcriptional sequencing and tandem mass tag-based (TMT) quantitative proteomics. Results At least 11,656 proteins and 133,911 genes were identified, and proteins including ATP sulfurylase (APS), cysteine synthase (CS), SeCys lyase, sulfate transporters, glutathione S-transferase (GSTs), glutathione peroxidase (GSH-Px), glutaredoxins (GRXs), superoxide dismutases (SODs), catalases (CATs), heat shock proteins (HSPs), UDP-glycose flavonoid glycosyltransferases (UFGTs), sucrose-6-phosphate hydrolases (Suc-6-PHs), archaeal phosphoglucose isomerases (APGIs), malate synthases (MSs), and endo-1,4-beta-xylanase (Xyn) in Se accumulation, ROS scavenging, secondary metabolism, and carbohydrate metabolism were significantly differently expressed. Conclusions This is the first complementary analyses of the transcriptome and proteome related with selenium responses in bread wheat. Our work enhances the understanding about the molecular mechanism of selenium responses in bread wheat.


2021 ◽  
Author(s):  
Quigly Dragotakes ◽  
Ella Jacobs ◽  
Lia Sanchez Ramirez ◽  
Olivia Insun Yoon ◽  
Caitlin Perez-Stable ◽  
...  

The fungus Cryptococcus neoformans is a major human pathogen with a remarkable intracellular survival strategy that includes exiting macrophages through non-lytic exocytosis (Vomocytosis) and transferring between macrophages (Dragotcytosis) by a mechanism that involves sequential events of non-lytic exocytosis and phagocytosis. Vomocytosis and Dragotcytosis are fungal driven processes, but their triggers are not understood. We hypothesized that the dynamics of Dragotcytosis could inherit the stochasticity of phagolysosome acidification and that Dragotcytosis was triggered by fungal cell stress. Consistent with this view, fungal cells involved in Dragotcytosis reside in phagolysosomes characterized by low pH and/or high oxidative stress. Using fluorescent microscopy, qPCR, live cell video microscopy, and fungal growth assays we found that the that mitigating pH or oxidative stress abrogated Dragotcytosis frequency, that ROS susceptible mutants of C. neoformans underwent Dragotcytosis more frequently. Dragotcytosis initiation was linked to phagolysosomal pH and oxidative stresses and correlated with the macrophage polarization state. Dragotcytosis manifested stochastic dynamics thus paralleling the dynamics of phagosomal acidification, which correlated with the inhospitality of phagolysosomes in differently polarized macrophages. Hence, randomness in phagosomal acidification randomly created a population of inhospitable phagosomes where fungal cell stress triggered stochastic C. neoformans non-lytic exocytosis dynamics to escape a non-permissive intracellular macrophage environment.


2021 ◽  
Author(s):  
Abdur Rauf ◽  
Richard Michael Wilkins

Many cases of insecticide resistance in insect pests give resulting no-cost strains that retain the resistance genes even in the absence of the toxic stressor. Malathion has been widely used against the red flour beetle, Tribolium castaneum Herbst. in stored products although no longer used. Malathion specific resistance in this pest has provided resistance that is long lasting and widely distributed. To understand this resistance a malathion resistant strain was challenged with a range of stressors including starvation, hyperoxia, malathion and a pathogen and the antioxidant responses and some lifecycle parameters were determined. Adult life span of malathion-specific resistant strain of T. castaneum was significantly shorter than the susceptible. Starvation and/or high oxygen reduced adult life span of both strains. Starving with and without 100% oxygen gave longer lifespan for the resistant strain, but for oxygen alone there was no difference. Under oxygen the proportional survival of the resistant strain to the adult stage was significantly higher, for both larvae and pupae, than the susceptible. The resistant strain when stressed with malathion and/or oxygen significantly increased catalase activity, but the susceptible did not. The resistant strain stressed with Paranosema whitei infection had significantly higher survival compared to the susceptible, and with almost no mortality. The malathion resistant strain of T. castaneum showed greater vigour than the susceptible in most oxidative stress situations and especially where stressors were combined. The induction of the antioxidant enzyme catalase could have helped the resistant strain to withstand oxidative stresses, including insecticidal and importantly those from pathogens. These adaptations, in the absence of insecticide, seem to support the increased immunity of host insects to pathogens seen in other insect species, such as mosquitoes. By increasing the responses to a range of stressors the resistant strain could be considered as having enhanced fitness.


Sign in / Sign up

Export Citation Format

Share Document