Fosinopril, a Phosphinic Acid Inhibitor of Angiotensin I Converting Enzyme: In Vitro and Preclinical In Vivo Pharmacology

1989 ◽  
Vol 14 (5) ◽  
pp. 730-736 ◽  
Author(s):  
J M DeForrest ◽  
T L Waldron ◽  
C Harvey ◽  
B Scalese ◽  
B Rubin ◽  
...  
2004 ◽  
Vol 92 (3) ◽  
pp. 357-366 ◽  
Author(s):  
Vanessa Vermeirssen ◽  
John Van Camp ◽  
Willy Verstraete

Hypertension or high blood pressure is a significant health problem worldwide. Bioactive peptides that inhibit angiotensin I converting enzyme (ACE) in the cardiovascular system can contribute to the prevention and treatment of hypertension. These ACE inhibitory peptides are derived from many food proteins, especially milk proteins. An ACE inhibitory activity in vitro does not always imply an antihypertensive effect in vivo. Even if it does, it is very difficult to establish a direct relationship between in vitro and in vivo activity. This is mainly due to the bioavailability of the ACE inhibitory peptides after oral administration and the fact that peptides may influence blood pressure by mechanisms other than ACE inhibition. To exert an antihypertensive effect after oral ingestion, ACE inhibitory peptides have to reach the cardiovascular system in an active form. Therefore, they need to remain active during digestion by human proteases and be transported through the intestinal wall into the blood. The bioavailability of some ACE inhibitory peptides has been studied. It is also known that (hydroxy)proline-containing peptides are generally resistant to degradation by digestive enzymes. Peptides can be absorbed intact through the intestine by paracellular and transcellular routes, but the potency of the bioactivity after absorption is inversely correlated to chain length. In addition, some strategies are proposed to increase the bioavailability of ACE inhibitory peptides. Further research into the bioavailability of ACE inhibitory peptides will lead to the development of more effective ACE inhibitory peptides and foods.


1999 ◽  
Vol 34 (3) ◽  
pp. 830-836 ◽  
Author(s):  
Daniel Henrion ◽  
Joelle Benessiano ◽  
Ivan Philip ◽  
Sandrine Vuillaumier-Barrot ◽  
Marc Iglarz ◽  
...  

1998 ◽  
Vol 330 (1) ◽  
pp. 61-65 ◽  
Author(s):  
R. Elwyn ISAAC ◽  
Liliane SCHOOFS ◽  
A. Tracy WILLIAMS ◽  
Dirk VEELAERT ◽  
Mohammed SAJID ◽  
...  

Insect peptidyl-dipeptidase A [angiotensin I-converting enzyme (ACE)] is a soluble single-domain peptidyl-dipeptidase that has many properties in common with the C-domain of mammalian somatic ACE and with the single-domain mammalian germinal ACE. Mammalian somatic ACE is important in blood homoeostasis, but the role of ACE in insects is not known. Immunocytochemistry has been used to localize ACE in the neuroendocrine system of the locust, Locusta migratoria. Staining was observed in five groups of neurosecretory cells in the brain and suboesophageal ganglion, in the nervi corpori cardiaci, the storage part of the corpora cardiaca and in the nervi corpori allati. In three groups of neurosecretory cells, ACE co-localized with locustamyotropins, suggesting a possible role for the enzyme in the metabolism of these neuropeptides. We demonstrate in vitro a novel activity of ACE that removes pairs of basic amino acid residues from a locustamyotropin peptide extended at the C-terminus with either Gly-Lys-Arg or Gly-Arg-Arg, corresponding to a consensus recognition sequence for endoproteolysis of prohormone proteins by prohormone convertases. The low Km and high kcat values (Km 7.3 and 5.0 μM, kcat 226 and 207 s-1 for the hydrolysis of Phe-Ser-Pro-Arg-Leu-Gly-Lys-Arg and Phe-Ser-Pro-Arg-Leu-Gly-Arg-Arg, respectively) obtained for the hydrolysis of these two peptides by insect ACE means that these peptides, along with mammalian bradykinin, are the most favoured in vitro ACE substrates so far identified. The discovery of this in vitro prohormone-processing activity of insect ACE provides a possible explanation for the intracellular co-localization of the enzyme with locustamyotropin peptides, and provides evidence for a new role for ACE in the biosynthesis of peptide hormones and transmitters.


Sign in / Sign up

Export Citation Format

Share Document