Rhizomucor miehei is an important fungus that produces aspartic proteases suitable for cheese processing. In this study, a novel aspartic protease gene (RmproB) was cloned from R. miehei CAU432 and expressed in Aspergillus niger. The amino acid sequence of RmproB shared the highest identity of 58.2% with the saccharopepsin PEP4 from Saccharomyces cerevisiae. High protease activity of 1242.2 U/mL was obtained through high density fermentation in 5 L fermentor. RmproB showed the optimal activity at pH 2.5 and 40 °C, respectively. It was stable within pH 1.5–6.5 and up to 45 °C. RmproB exhibited broad substrate specificity and had Km values of 3.16, 5.88, 5.43, and 1.56 mg/mL for casein, hemoglobin, myoglobin, and bovine serum albumin, respectively. RmproB also showed remarkable milk-clotting activity of 3894.1 SU/mg and identified the cleavage of Lys21-Ile22, Leu32-Ser33, Lys63-Pro64, Leu79-Ser80, Phe105-Met106, and Asp148-Ser149 bonds in κ-casein. Moreover, duck hemoglobin was hydrolyzed by RmproB to prepare angiotensin-I-converting enzyme (ACE) inhibitory peptides with high ACE-inhibitory activity (IC50 of 0.195 mg/mL). The duck hemoglobin peptides were further produced at kilo-scale with a yield of 62.5%. High-level expression and favorable biochemical characterization of RmproB make it a promising candidate for cheese processing and production of ACE-inhibitory peptides.