EFFECTS OF NITRIC OXIDE SYNTHASE INHIBITION ON SPLANCHNIC PERFUSION IN SEPTIC SHOCK

1994 ◽  
Vol 36 (1) ◽  
pp. 158
Author(s):  
P. J. Offner ◽  
F. M. Robertson ◽  
J. Offner ◽  
Gregory Jurkovich
2006 ◽  
Vol 95 (04) ◽  
pp. 720-727 ◽  
Author(s):  
Soni Pullamsetti ◽  
Daniel Maring ◽  
Hossein Ghofrani ◽  
Konstantin Mayer ◽  
Norbert Weissmann ◽  
...  

SummaryTreatment of hemodynamic instability in septic shock often demands the administration of vasopressor agents, although these may have deleterious effects on microcirculatory homeostasis. Inhibition of nitric oxide synthase (NOS) has been suggested as an alternative therapeutic approach, as NO formation may be excessively increased in sepsis. To compare the effects of epinephrine titration, non-selective NOS inhibition by L-NMMA and selective inhibition of inducible NOS (iNOS) by 1400W on hemodynamics and on the regulation of microcirculation in a rat model of endotoxic shock, we intravenously injected endotoxin (LPS) or saline to male Wist ar rats and after 2 hours randomized LPS treated rats into four different groups that received either saline, norepinephrine, L-NMMA or 1400W (n=6 per group). Three hours after LPS administration, rats presented with severe systemic arterial hypotension (64 ± 3 vs. 115 ± 4 mmHg, p<0.001), unresponsiveness to volume treatment, lactate acidosis and a marked increase in plasmatic nitrite and nitrate levels (15 ±8 vs. 263 ± 47 µM, p<0.001). Measurement of the tissue oxygenation in the ileum mucosal layer by the Erlangen micro-lightguide spectrophotometer (EMPHO) technique demonstrated marked heterogeneity of hemoglobin saturation, with appearance of low oxygenated areas. Norepinephrine, usually stabilizing blood pressure (99 ±7 vs. 67 ±4 mmHg 60 min after infusion, p<0.01), increased lactate formation (7.9± 0.2 vs. 3.7 ± 0.5 mM, p<0.001) and drastically increased low oxygenated regions in the ileum mucosal layer. L-NMMA similarly increased blood pressure (92 ±6 vs. 67 ±4 mmHg 60 min after infusion, p<0.05), but did not enhance lactate acidosis. However, some further deterioration of mucosa oxygenation was again noted. 1400W forwarded stabilization of blood pressure (88 ± 5 vs. 67 ±4 mmHg 60 min after injection, p<0.05), reduced plasmatic nitrite and nitrate levels similar to L-NMMA, without an aggravation of lactate acidosis. In addition, mucosal oxygenation did not deteriorate in response to this agent. Thereby, we conclude that in a rat model of endotoxic shock selective iNOS inhibitors are superior to non-specific NOS inhibitors and in particular to norepinephrine for the treatment of macro-and microcirculatory abnormalities in experimental septic shock.


1995 ◽  
Vol 23 (Supplement) ◽  
pp. A153
Author(s):  
Mercé Jourdain ◽  
Jacques Mangalaboyi ◽  
Benoit Vallet ◽  
François Fourrier ◽  
Claude Chopin

Blood ◽  
2002 ◽  
Vol 99 (5) ◽  
pp. 1638-1645 ◽  
Author(s):  
Hirotaka Isobe ◽  
Kenji Okajima ◽  
Mitsuhiro Uchiba ◽  
Naoaki Harada ◽  
Hiroaki Okabe

Antithrombin (AT) prevents Escherichia coli–induced hypotension in animal models of sepsis, and it further reduces the mortality of patients with septic shock. In the present study, we examined whether AT may prevent the endotoxin (ET)-induced hypotension by promoting the endothelial release of prostacyclin (PGI2) in rats. Intravenous administration of AT (250 U/kg) prevented both hypotension and the increases in plasma levels of NO2−/NO3− in rats given ET. Lung expression of messenger RNA (mRNA) for tumor necrosis factor-α (TNF-α) was transiently increased after ET administration, followed by the increases in lung tissue levels of TNF-α. Both the lung activity of the inducible form of nitric oxide synthase (iNOS) and the lung expression of iNOS mRNA in animals administered ET were gradually increased after the TNF-α mRNA expression had peaked. Administration of AT significantly inhibited these increases. Neither DEGR-F.Xa, a selective inhibitor of thrombin generation, nor Trp49-modified AT, which is not capable of promoting the endothelial release of PGI2, showed any effects on these changes induced by ET. Administration of antirat TNF-α antibody produced effects similar to those induced by AT. Indomethacin pretreatment abrogated the effects induced by AT. Iloprost, a stable derivative of PGI2, produced effects similar to those of AT. These findings suggested that AT prevents the ET-induced hypotension by inhibiting the induction of iNOS through inhibiting TNF-α production. These effects of AT could be mediated by the promotion of endothelial release of PGI2 and might at least partly explain the therapeutic effects for septic shock.


Sign in / Sign up

Export Citation Format

Share Document