A COMPARISON OF TWO DIFFERENT RESISTANCE TRAINING INTENSITIES ON EXERCISE ENERGY EXPENDITURE AND EXCESS POST-EXERCISE OXYGEN CONSUMPTION

2001 ◽  
Vol 33 (5) ◽  
pp. S73
Author(s):  
K Thornton ◽  
J A. Potteiger
2021 ◽  
Vol 3 ◽  
Author(s):  
Gustavo A. João ◽  
Gustavo P. L. Almeida ◽  
Lucas D. Tavares ◽  
Carlos Augusto Kalva-Filho ◽  
Nelson Carvas Junior ◽  
...  

Purpose: This study aimed to compare the oxygen consumption, lactate concentrations, and energy expenditure using three different intensities during the resistance training sessions.Methods: A total of 15 men (22.9 ± 2.61 years) experienced in resistance training underwent 3 sessions composed of 8 exercises (chest press, pec deck, squat, lat pull-down, biceps curl, triceps extension, hamstring curl, and crunch machine), which were applied in the same order. The weight lifted differed among the sessions [high session: 6 sets of 5 repetitions at 90% of 1-repetition maximum (1-RM); intermediary session: 3 sets of 10 repetitions at 75% of 1-RM; and low session: 2 sets of 15 repetitions at 60% of 1-RM]. The oxygen consumption (VO2)—during and after (excess post-exercise oxygen consumption (EPOC)) the session, blood lactate concentration, and energy expenditure (i.e., the sum of aerobic and anaerobic contributions, respectively) were assessed.Results: The VO2 significantly decreased in the function of the weight lifting (F(2.28) = 17.02; p < 0.01; ηG2 = 0.32). However, the aerobic contributions significantly increase in the function of the weight lifting (F(2.28) = 79.18; p < 0.01; ηG2 = 0.75). The anaerobic contributions were not different among the sessions (p > 0.05; ηG2 < 0.01). Thus, the total energy expenditure during the session (kcal) significantly increased in the function of the weight lifting (F(2.28) = 86.68; p < 0.01; ηG2 = 0.75). The energy expenditure expressed in time unit (kcal·min−1) was higher in low session than in high session (F(2.28) = 6.20; p < 0.01; ηG2 = 0.15).Conclusion: The weight lifted during resistance training-induced different physiological responses, which induced higher energy expenditure per unit of time during the low session.


1992 ◽  
Vol 4 (2) ◽  
pp. 166-179 ◽  
Author(s):  
Molly S. Bray ◽  
James R. Morrow ◽  
James M. Pivarnik ◽  
John T. Bricker

This study investigated the validity of the Caltrac accelerometer for estimating resting and exercise energy expenditure for children. Seventeen children 9 to 12 years of age participated in the study. Criterion values of energy expenditure were determined from measures of oxygen consumption (VO2) and respiratory exchange ratio (RER), and Caltrac estimates of energy expenditure were obtained concurrently for each experimental condition. Correlations were significant between Caltrac estimates and measured energy expenditure at rest (r = .53, p<.03) and at slow (r = .89, p<.001) and brisk (r = .85, p<.001) treadmill walking. The Caltrac overestimated caloric expenditure for rest (M = 7%; range = −8 to 36%) and also for both slow (M = 17%; range = −3 to 30%) and brisk (M = 25%; range = 5 to 46%) walking. However, because of the high validity coefficients during activity, and because of its practicality in field settings, the Caltrac may be useful in estimating daily resting and walking energy expenditure for groups of children.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Paulo Farinatti ◽  
Antonio Gil Castinheiras Neto ◽  
Nádia Lima da Silva

Objectives. Resistance training may influence the resting metabolic rate (RMR), which is desirable in weight management programs. However, its impact on excess postexercise oxygen consumption (EPOC) is yet to be defined. The study evaluated the contribution of resistance training variables to EPOC. Design. Studies published until November 2011 were systematically reviewed. Methods. MEDLINE, LILACS, SCIELO, Science Citation Index, Scopus, SPORTDiscus, and CINAHL databases were consulted. The methodological quality of studies was assessed by the PEDro 10-point scale. A total of 155 participants (54% men) aged between 20±2 and 34±14 years were observed by 16 studies (quality scores ranged from 5 to 7), which were organized according to treatment similarity (number of sets, intensity, rest interval, speed of movement, and exercise order). Results. Training volume seemed to influence both EPOC magnitude and duration, whereas workload influenced mostly the magnitude. Short rest intervals (<60 s) increased the EPOC magnitude, but not the overall energy expenditure. Conclusion. Resistance training with high intensity and volume, performed with short rest intervals (as in circuit training), probably have greater impact on EPOC. Methodological procedures, particularly time of post-exercise observation and RMR assessment, should be standardized to an appropriate quantification of the actual influence of resistance training on EPOC.


Sign in / Sign up

Export Citation Format

Share Document