VARIABLE FREQUENCY TRAIN ELECTRICAL STIMULATION OF THE QUADRICEPS FEMORIS IN COMPLETE SPINAL CORD INJURED INDIVIDUALS

2002 ◽  
Vol 34 (5) ◽  
pp. S262
Author(s):  
J M. Slade ◽  
C S. Bickel ◽  
G L. Warren ◽  
G A. Dudley
1998 ◽  
Vol 79 (9) ◽  
pp. 1133-1136 ◽  
Author(s):  
Andreas Hartkopp ◽  
RenéJ.L. Murphy ◽  
Thomas Mohr ◽  
Michael Kjcer ◽  
Fin Biering-Sorensen

1993 ◽  
Vol 75 (6) ◽  
pp. 2400-2405 ◽  
Author(s):  
R. A. Robergs ◽  
O. Appenzeller ◽  
C. Qualls ◽  
J. Aisenbrey ◽  
J. Krauss ◽  
...  

The purpose of this study was to assess changes in creatine kinase (CK) and endothelin (ET) in individuals with spinal cord injury (SCI) after computerized functional electrical stimulation leg ergometry (CFES LE). Eight subjects (7 male and 1 female) with complete spinal cord lesions (C7 to L1) completed zero-loaded CFES LE tests at baseline, after 3, 6, and 12 wk of CFES LE training (30 min, 3 times/wk), and also after detraining (DT) (n = 5). Venous blood samples were drawn 24, 48, and 72 h after CFES LE for measurement of ET and CK. The CK response was largest (peak CK) 72 h after baseline tests (28.2 +/- 6.0 to 895.7 +/- 345.9 ktals/l) and was no different from baseline by weeks 3, 6, and 12. After DT, CK was similar before and after CFES LE (153.8 +/- 19.0 and 189.7 +/- 34.5 ktals/l, respectively). CFES LE also significantly increased peak ET after baseline (from 11.7 +/- 1.5 to 18.0 +/- 2.5 pg/ml). During the subsequent training, peak ET remained significantly higher than the baseline value at weeks 3, 6, and 12 (20.2 +/- 1.8, 18.0 +/- 1.1, and 16.9 +/- 2.2 pg/ml, respectively). After DT, peak ET increased significant relationship (r = 0.44) existed between ln peak CK activity and peak ET. In summary, the increase in circulating ET in spinal cord-injured individuals may have implications for baroreceptor function and therefore blood pressure control in SCI. Further research into CFES LE, ET, and baroreceptor function in SCI is warranted.


2003 ◽  
Vol 94 (2) ◽  
pp. 701-708 ◽  
Author(s):  
Jennifer L. Olive ◽  
Jill M. Slade ◽  
Gary A. Dudley ◽  
Kevin K. McCully

Our purpose was to measure blood flow and muscle fatigue in chronic, complete, spinal cord-injured (SCI) and able-bodied (AB) individuals during electrical stimulation. Electrical stimulation of the quadriceps muscles was used to elicit similar activated muscle mass. Blood flow was measured in the femoral artery by Doppler ultrasound. Muscle fatigue was significantly greater (three- to eightfold, P ≤ 0.001) in the SCI vs. the AB individuals. The magnitude of blood flow was not significantly different between groups. A prolonged half-time to peak blood flow at the beginning of exercise (fivefold, P = 0.001) and recovery of blood flow at the end of exercise (threefold, P = 0.009) was found in the SCI vs. the AB group. In conclusion, the magnitude of the muscle blood flow to electrical stimulation was not associated with increased muscle fatigue in SCI individuals. However, the prolonged time to peak blood flow may be an explanation for increased fatigue in SCI individuals.


2004 ◽  
Vol 41 (1) ◽  
pp. 33 ◽  
Author(s):  
C. Scott Bickel ◽  
Jill M. Slade ◽  
Leslie R. VanHiel ◽  
Gordon L. Warren ◽  
Gary A. Dudley

1981 ◽  
Vol 44 (4) ◽  
pp. 207-217 ◽  
Author(s):  
Don M. Long ◽  
Donald Erickson ◽  
James Campbell ◽  
Richard North

2021 ◽  
Author(s):  
S.S. Ananiev ◽  
D.A. Pavlov ◽  
R.N. Yakupov ◽  
V.A. Golodnova ◽  
M.V. Balykin

The study was conducted on 22 healthy men aged 18-23 years. The primary motor cortex innervating the lower limb was stimulated with transcranial magnetic stimulation. Using transcutaneous electrical stimulation of the spinal cord, evoked motor responses of the muscles of the lower extremities were initiated when electrodes were applied cutaneous between the spinous processes in the Th11-Th12 projection. Research protocol: Determination of the thresholds of BMO of the muscles of the lower extremities during TESCS; determination of the BMO threshold of the TA muscle in TMS; determination of the thresholds of the BMO of the muscles of the lower extremities during TESCS against the background of 80% and 90% TMS. It was found that magnetic stimulation of the motor cortex of the brain leads to an increase in the excitability of the neural structures of the lumbar thickening of the spinal cord and an improvement in neuromuscular interactions. Key words: transcranial magnetic stimulation, transcutaneous electrical stimulation of the spinal cord, neural networks, excitability, neuromuscular interactions.


Sign in / Sign up

Export Citation Format

Share Document