Olfactory Ensheathing Cells: Bridging the Gap in Spinal Cord Injury

Neurosurgery ◽  
2000 ◽  
Vol 47 (5) ◽  
pp. 1057-1069 ◽  
Author(s):  
Juan C. Bartolomei ◽  
Charles A. Greer

Abstract SPINAL CORD INJURY (SCI) continues to be an insidious and challenging problem for scientists and clinicians. Recent neuroscientific advances have changed the pessimistic notion that axons are not capable of significant extension after transection. The challenges of recovering from SCI have been broadly divided into four areas: 1) cell survival; 2) axon regeneration (growth); 3) correct targeting by growing axons; and 4) establishment of correct and functional synaptic appositions. After acute SCI, there seems to be a therapeutic window of opportunity within which the devastating consequences of the secondary injury can be ameliorated. This is supported by several observations in which apoptotic glial cells have been identified up to 1 week after acute SCI. Moreover, autopsy studies have identified anatomically preserved but unmyelinated axons that could potentially subserve normal physiological properties. These observations suggest that therapeutic strategies after SCI can be directed into two broad modalities: 1) prevention or amelioration of the secondary injury, and 2) restorative or regenerative interventions. Intraspinal transplants have been used after SCI as a means for restoring the severed neuraxis. Fetal cell transplants and, more recently, progenitor cells have been used to restore intraspinal circuitry or to serve as relay for damaged axons. In an attempt to remyelinate anatomically preserved but physiologically disrupted axons, newer therapeutic interventions have incorporated the transplantation of myelinating cells, such as Schwann cells, oligodendrocytes, and olfactory ensheathing cells. Of these cells, the olfactory ensheathing cells have become a more favorable candidate for extensive remyelination and axonal regeneration. Olfactory ensheathing cells are found along the full length of the olfactory nerve, from the basal lamina of the epithelium to the olfactory bulb, crossing the peripheral nervous system-central nervous system junction. In vitro, these cells promote robust axonal growth, in part through cell adhesion molecules and possibly by secretion of neurotrophic growth factors that support axonal elongation and extension. In animal models of SCI, transplantation of ensheathing cells supports axonal remyelination and extensive migration throughout the length of the spinal cord. Although the specific properties of these cells that govern enhanced axon regeneration remain to be elucidated, it seems certain that they will contribute to the establishment of new horizons in SCI research.

2018 ◽  
Vol 1 (1) ◽  
pp. 146-151 ◽  
Author(s):  
Lin Chen ◽  
Yuqi Zhang ◽  
Xijing He ◽  
Saberi Hooshang

Objectives:Traumatic spinal cord injury (tSCI) remains a major clinical challenge. Cell transplantation brings a glimmer of light, among them olfactory ensheathing cells (OECs) have shown some neurorestorative effect. Due to the results of each group lack basic consistency, many technical details are believed to affect the overall outcome. We compare the clinical outcome of intramedullary transplant of olfactory ensheathing cells for patients with spinal cord injury at multi-centers worldwide, and to explore the potential standardized transplantation that suits for the clinical requirements.Methods:Here, we used the Pubmed and CNKI databases to search online the literatures published in the last 20 years for the clinical studies/trials of OECs for chronic spinal cord injury in the representative clinical center. The results of these representative clinical treatment centers were searched and analyzed. The parameters which may affect the effect including the concentration of cells, the total number of cells, the choice of incision, the site of transplantation, the number of transplantation sites, the advantages and disadvantages of transplantation equipment, and postoperative management, were compared carefully to clarify its impact on the clinical results.Results:In these literatures, 2 Chinese centers, 1 Australian center and 1 European center were selected for intraspinal transplantation. The reason of different results may be due to the excessive injection times and/or the excessive total injection volume.Conclusions:Cell implant to the spinal cord parenchyma is effective for restoring neurological functions, but improper procedures may lead to ineffective results. Concise surgery appears to be more suitable for clinical application than ostensibly precise and complex injection procedures. Sufficient rehabilitation training is surely necessary for the integration of motor recovery after cell transplantation.


2019 ◽  
Vol 131 (5) ◽  
pp. 1063-1076
Author(s):  
Krista J. Stewart ◽  
Bermans J. Iskandar ◽  
Brenton M. Meier ◽  
Elias B. Rizk ◽  
Nithya Hariharan ◽  
...  

Abstract Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New Background Nitrous oxide can induce neurotoxicity. The authors hypothesized that exposure to nitrous oxide impairs axonal regeneration and functional recovery after central nervous system injury. Methods The consequences of single and serial in vivo nitrous oxide exposures on axon regeneration in four experimental male rat models of nervous system injury were measured: in vitro axon regeneration in cell culture after in vivo nitrous oxide administration, in vivo axon regeneration after sharp spinal cord injury, in vivo axon regeneration after sharp optic nerve injury, and in vivo functional recovery after blunt contusion spinal cord injury. Results In vitro axon regeneration 48 h after a single in vivo 70% N2O exposure is less than half that in the absence of nitrous oxide (mean ± SD, 478 ± 275 um; n = 48) versus 210 ± 152 um (n = 48; P < 0.0001). A single exposure to 80% N2O inhibits the beneficial effects of folic acid on in vivo axonal regeneration after sharp spinal cord injury (13.4 ± 7.1% regenerating neurons [n = 12] vs. 0.6 ± 0.7% regenerating neurons [n = 4], P = 0.004). Serial 80% N2O administration reverses the benefit of folic acid on in vivo retinal ganglion cell axon regeneration after sharp optic nerve injury (1277 ± 180 regenerating retinal ganglion cells [n = 7] vs. 895 ± 164 regenerating retinal ganglion cells [n = 7], P = 0.005). Serial 80% N2O exposures reverses the benefit of folic acid on in vivo functional recovery after blunt spinal cord contusion (estimate for fixed effects ± standard error of the estimate: folic acid 5.60 ± 0.54 [n = 9] vs. folic acid + 80% N2O 5.19 ± 0.62 [n = 7], P < 0.0001). Conclusions These data indicate that nitrous oxide can impair the ability of central nervous system neurons to regenerate axons after sharp and blunt trauma.


2020 ◽  
Vol 37 (3) ◽  
pp. 507-516
Author(s):  
Quentin Delarue ◽  
Anne Mayeur ◽  
Chaima Chalfouh ◽  
Axel Honoré ◽  
Célia Duclos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document