Differences in Sensitivity Between Magnetic Motor-Evoked Potentials and Somatosensory-Evoked Potentials in Experimental Spinal Cord Lesions

Spine ◽  
1996 ◽  
Vol 21 (19) ◽  
pp. 2190-2196 ◽  
Author(s):  
Yutaka Hiraizumi ◽  
Ensor E. Transfeldt ◽  
Norio Kawahara ◽  
Hiroshi Yamada
2020 ◽  
Author(s):  
Chao Chen ◽  
Jing Li ◽  
Bingjin Wang ◽  
Lingwei Zhu ◽  
Yong Gao ◽  
...  

Abstract Background: Neurological impairment during spinal deformity surgery was the most serious complication. When confronting intraoperative neurophysiological monitoring alerts, various surgical management methods such as the release of implants and decompression of the spinal cord are always performed. Transvertebral transposition of the spinal cord is rarely performed, and its role in the management of acute paraplegia is seldom reported.Methods: The authors present two patients with kyphoscoliosis experienced intraoperatively or postoperatively neurological deficits and abnormal neurological monitoring was detected during correction surgery. Acute paraplegia was confirmed by a wake-up test. Subsequent spinal cord transposition was performed. Intraoperative neurophysiological monitoring motor evoked potentials (MEP) and somatosensory evoked potentials (SEP) was performed to detect the changes during the process.Results: After transvertebral transposition of the spinal cord, the MEPs and SEPs were significantly improved in both patients during surgery. The spinal cord function was restored postoperatively and recovered to normal at the final follow-up in two patients. Conclusions: This case demonstrated that instead of decreasing the correction ratio of kyphoscoliosis, transvertebral transposition of the spinal cord under intraoperative neurophysiological monitoring could be an effective therapeutic strategy for acute spinal cord dysfunction caused by deformity correction surgeries.


1983 ◽  
Vol 14 (3) ◽  
pp. 142-151 ◽  
Author(s):  
Richard K. Simpson ◽  
John G. Blackburn ◽  
Henry F. Martin ◽  
Sidney Katz

1988 ◽  
Vol 10 (6) ◽  
pp. 355-359 ◽  
Author(s):  
Naohisa Kamimura ◽  
Kenichi Shichida ◽  
Yutaka Tomita ◽  
Sachio Takashima ◽  
Kenzo Takeshita

2005 ◽  
Vol 56 (suppl_4) ◽  
pp. ONS-299-ONS-314 ◽  
Author(s):  
Stanley A. Skinner ◽  
Mahmoud Nagib ◽  
Thomas A. Bergman ◽  
Robert E. Maxwell ◽  
Gaspar Msangi

Abstract OBJECTIVE: The resection of intramedullary spinal cord lesions (ISCLs) can be complicated by neurological deficits. Neuromonitoring has been used to reduce intraoperative risk. We have used somatosensory evoked potentials (SEPs) and muscle-derived transcranial electrical motor evoked potentials (myogenic TCE-MEPs) to monitor ISCL removal. We report our retrospective experience with the addition of free-running electromyography (EMG). METHODS: Thirteen patients underwent 14 monitored ISCL excisions. Anesthesia was maintained with minimal inhalant to reduce motoneuron suppression and enhance the myogenic TCE-MEPs. Free-running EMG was examined in the four limbs for evidence of abnormal bursts, prolonged tonic discharge, or sudden electrical silence. Warning of an electromyographic abnormality or myogenic TCE-MEP loss prompted interventions, including blood pressure elevation, a pause in surgery, a wake-up test, or termination of surgery. Pre- and postoperative neurological examinations determined the incidence of new deficits. RESULTS: The combined use of free-running EMG and myogenic TCE-MEPs detected all eight patients with a new motor deficit after surgery; there was one false-positive report. In three of the eight true-positive cases, an electromyographic abnormality immediately anticipated loss of the myogenic TCE-MEPs. Two patients with abnormal EMGs but unchanged myogenic TCE-MEPs experienced mild postoperative worsening of motor deficits; myogenic TCE-MEPs alone would have generated false-negative reports in these cases. CONCLUSION: During resection of ISCLs, free-running EMG can supplement motor tract monitoring by TCE-MEPs. Segmental and suprasegmental elicitation of neurotonic discharges can be observed in four-limb EMG. Abnormal electromyographic bursts, tonic discharge, or abrupt electromyographic silence may anticipate myogenic TCE-MEP loss and predict a postoperative motor deficit.


2008 ◽  
Vol 108 (4) ◽  
pp. 580-587 ◽  
Author(s):  
Timothy S.J. Shine ◽  
Barry A. Harrison ◽  
Martin L. De Ruyter ◽  
Julia E. Crook ◽  
Michael Heckman ◽  
...  

Background Paraplegia is a devastating complication for patients undergoing repair of thoracoabdominal aortic aneurysms. A monitor to detect spinal cord ischemia is necessary if anesthesiologists are to intervene to protect the spinal cord during aortic aneurysm clamping. Methods The medical records of 60 patients who underwent thoracoabdominal aortic aneurysm repair with regional lumbar epidural cooling with evoked potential monitoring were reviewed. The authors analyzed latency and amplitude of motor evoked potentials, somatosensory evoked potentials, and H reflexes before cooling and clamping, after cooling and before clamping, during clamping, and after release of aortic cross clamp. Results Twenty minutes after the aortic cross clamp was placed, motor evoked potentials had 88% sensitivity and 65% specificity in predicting spinal cord ischemia. The negative predictive value of motor evoked potentials at 20 min after aortic cross clamping was 96%. Conclusions Rapid loss of motor evoked potentials or H reflexes after application of the aortic cross clamp identifies a subgroup of patients who are at high risk of developing spinal cord ischemia and in whom aggressive anesthetic and surgical interventions may be justified.


Sign in / Sign up

Export Citation Format

Share Document