GM-CSF INDEPENDENT DEVELOPMENT OF DENDRITIC CELLS (DC) FROM BONE MARROW CELLS (BMC) IN GM-CSF RECEPTOR DEFICIENT MOUSE.

2000 ◽  
Vol 69 (Supplement) ◽  
pp. S251
Author(s):  
Tohko Miyagi ◽  
Hajime Hikino ◽  
Yan Hua ◽  
Saito Hirohisa ◽  
Daniel P. Gold ◽  
...  

2000 ◽  
Vol 32 (7) ◽  
pp. 2458-2459 ◽  
Author(s):  
H Hikino ◽  
T Miyagi ◽  
Y Hua ◽  
S Hirohisa ◽  
D.P Gold ◽  
...  


2004 ◽  
Vol 229 (2) ◽  
pp. 117-129 ◽  
Author(s):  
Hua Yan ◽  
Tohko Miyagi ◽  
Eigo Satoh ◽  
Wataru Sugiura ◽  
Naoki Yamamoto ◽  
...  


Blood ◽  
1989 ◽  
Vol 73 (7) ◽  
pp. 1836-1841 ◽  
Author(s):  
M Kobayashi ◽  
BH Van Leeuwen ◽  
S Elsbury ◽  
ME Martinson ◽  
IG Young ◽  
...  

Abstract Human bone marrow cells cultured for 21 days in the presence of recombinant human interleukin-3 (IL-3) produced up to 28 times more colony-forming cells (CFC) than could be obtained from cultures stimulated with granulocyte colony stimulating factor (G-CSF) or granulocyte-macrophage CSF (GM-CSF). IL-3-cultured cells retained a multipotent response to IL-3 in colony assays but were restricted to formation of granulocyte colonies in G-CSF and granulocyte or macrophage colonies in GM-CSF. Culture of bone marrow cells in IL-3 also led to accumulation of large numbers of eosinophils and basophils. These data contrast with the effects of G-CSF, GM-CSF, and IL-3 in seven-day cultures. Here both GM-CSF and IL-3 amplified total CFC that had similar multipotential colony-forming capability in either factor. G-CSF, on the other hand, depleted IL-3-responsive colony-forming cells dramatically, apparently by causing these cells to mature into granulocytes. The data suggest that a large proportion of IL-3- responsive cells in human bone marrow express receptors for G-CSF and can respond to this factor, the majority becoming neutrophils. Furthermore, the CFC maintained for 21 days in IL-3 may be a functionally distinct population from that produced after seven days culture of bone marrow cells in either IL-3 or GM-CSF.



2010 ◽  
Vol 135 ◽  
pp. S32
Author(s):  
Patricia Taylor ◽  
Gary Koski ◽  
Erin Bailey ◽  
Daniel Zimmerman ◽  
Ken S. Rosenthal


Author(s):  
Florence Vallelian ◽  
Raphael M. Buzzi ◽  
Marc Pfefferlé ◽  
Ayla Yalamanoglu ◽  
Irina L. Dubach ◽  
...  

AbstractHeme is an erythrocyte-derived toxin that drives disease progression in hemolytic anemias, such as sickle cell disease. During hemolysis, specialized bone marrow-derived macrophages with a high heme-metabolism capacity orchestrate disease adaptation by removing damaged erythrocytes and heme-protein complexes from the blood and supporting iron recycling for erythropoiesis. Since chronic heme-stress is noxious for macrophages, erythrophagocytes in the spleen are continuously replenished from bone marrow-derived progenitors. Here, we hypothesized that adaptation to heme stress progressively shifts differentiation trajectories of bone marrow progenitors to expand the capacity of heme-handling monocyte-derived macrophages at the expense of the homeostatic generation of dendritic cells, which emerge from shared myeloid precursors. This heme-induced redirection of differentiation trajectories may contribute to hemolysis-induced secondary immunodeficiency. We performed single-cell RNA-sequencing with directional RNA velocity analysis of GM-CSF-supplemented mouse bone marrow cultures to assess myeloid differentiation under heme stress. We found that heme-activated NRF2 signaling shifted the differentiation of bone marrow cells towards antioxidant, iron-recycling macrophages, suppressing the generation of dendritic cells in heme-exposed bone marrow cultures. Heme eliminated the capacity of GM-CSF-supplemented bone marrow cultures to activate antigen-specific CD4 T cells. The generation of functionally competent dendritic cells was restored by NRF2 loss. The heme-induced phenotype of macrophage expansion with concurrent dendritic cell depletion was reproduced in hemolytic mice with sickle cell disease and spherocytosis and associated with reduced dendritic cell functions in the spleen. Our data provide a novel mechanistic underpinning of hemolytic stress as a driver of hyposplenism-related secondary immunodeficiency.



Sign in / Sign up

Export Citation Format

Share Document