deficient mouse
Recently Published Documents


TOTAL DOCUMENTS

1025
(FIVE YEARS 62)

H-INDEX

75
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Shunsuke Yuri ◽  
Yuki Murase ◽  
Aayako Isotani

Regenerative medicine is a tool to compensate for the shortage of lungs for transplantation, but it remains difficult to construct a lung in vitro due to the complex three-dimensional structures and multiple cell types required. A blastocyst complementation method using interspecies chimeric animals has been attracting attention as a way to create complex organs in animals, but successful lung formation has not yet been achieved. Here, we applied a reverse-blastocyst complementation method to clarify the conditions required to form lungs in an Fgfr2b-deficient mouse model. We then successfully formed a rat-derived lung in the mouse model without generating a mouse line by applying a tetraploid-based organ-complementation method. Importantly, rat lung epithelial cells retained their developmental timing even in the mouse body. This result provides useful insights regarding the need to overcome the barrier of species-specific developmental timing in order to generate functional lungs in interspecies chimeras.


2021 ◽  
Vol 22 (24) ◽  
pp. 13590
Author(s):  
Katarina Ilic ◽  
Xiao Lin ◽  
Ayse Malci ◽  
Mario Stojanović ◽  
Borna Puljko ◽  
...  

The recent identification of plasma membrane (Ca2+)-ATPase (PMCA)-Neuroplastin (Np) complexes has renewed attention on cell regulation of cytosolic calcium extrusion, which is of particular relevance in neurons. Here, we tested the hypothesis that PMCA-Neuroplastin complexes exist in specific ganglioside-containing rafts, which could affect calcium homeostasis. We analyzed the abundance of all four PMCA paralogs (PMCA1-4) and Neuroplastin isoforms (Np65 and Np55) in lipid rafts and bulk membrane fractions from GM2/GD2 synthase-deficient mouse brains. In these fractions, we found altered distribution of Np65/Np55 and selected PMCA isoforms, namely PMCA1 and 2. Cell surface staining and confocal microscopy identified GM1 as the main complex ganglioside co-localizing with Neuroplastin in cultured hippocampal neurons. Furthermore, blocking GM1 with a specific antibody resulted in delayed calcium restoration of electrically evoked calcium transients in the soma of hippocampal neurons. The content and composition of all ganglioside species were unchanged in Neuroplastin-deficient mouse brains. Therefore, we conclude that altered composition or disorganization of ganglioside-containing rafts results in changed regulation of calcium signals in neurons. We propose that GM1 could be a key sphingolipid for ensuring proper location of the PMCA-Neuroplastin complexes into rafts in order to participate in the regulation of neuronal calcium homeostasis.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 686-686
Author(s):  
Lauren Wimer ◽  
Martin Valdearcos Contreras ◽  
Muniesh Muthaiyan Shanmugam ◽  
Jessica Ramirez ◽  
Jennifer Beck ◽  
...  

Abstract Obesity remains one of the leading risk factors for aging and age-related diseases such as Alzheimer’s and type II diabetes, and effects 40% of the US population. The occurrence of obesity has been closely tied to an increase in sugar consumption with chronic hyperglycemia enhancing glycolysis. One of the byproducts of glycolysis is methylglyoxal (MGO), a reactive precursor for advanced glycation end-products (AGEs), which drives type II diabetes and its complications. We hypothesize that an MGO-derived AGE, MG-H1, affects hypothalamic regulation of food consumption and metabolism parallel to the leptin pathway in mice fed a high carbohydrate diet. Exogenous supplementation of MG-H1 increased food consumption rates and weight gain. Conversely, glycation byproduct lowering compounds (GLY-LOW), a customized chemical cocktail that blocks the production of MGO, rescued over-feeding phenotypes in wild-type mice. Furthermore, GLY-LOW treatment in a leptin receptor deficient mouse model rescued weight gain, diabetic phenotypes and lifespan. RNA sequencing of the hypothalamus of leptin receptor deficient mice treated with GLY-LOW showed significant downregulation of Rax, a gene responsible for tanycyte differentiation, and several genes involved in feeding and aging. We propose that specific cells in the hypothalamus both make and respond to MG-H1. We will also discuss evidence for the potential of GLY-LOW as a new class of therapeutics that reduce the effects of glycation to reduce food intake and slow aging.


2021 ◽  
Vol 28 ◽  
pp. 101138
Author(s):  
Xingsheng Li ◽  
Sonia Fargue ◽  
Anil Kumar Challa ◽  
William Poore ◽  
John Knight ◽  
...  
Keyword(s):  

2021 ◽  
Vol 22 (22) ◽  
pp. 12434
Author(s):  
Megumi Mae ◽  
Mohammad Ibtehaz Alam ◽  
Yasunori Yamashita ◽  
Yukio Ozaki ◽  
Kanako Higuchi ◽  
...  

Dental calculus (DC) is a common deposit in periodontitis patients. We have previously shown that DC contains both microbial components and calcium phosphate crystals that induce an osteoclastogenic cytokine IL-1β via the NLRP3 inflammasome in macrophages. In this study, we examined the effects of cytokines produced by mouse macrophages stimulated with DC on osteoclastogenesis. The culture supernatants from wild-type (WT) mouse macrophages stimulated with DC accelerated osteoclastogenesis in RANKL-primed mouse bone marrow macrophages (BMMs), but inhibited osteoclastogenesis in RANKL-primed RAW-D cells. WT, but not NLRP3-deficient, mouse macrophages stimulated with DC produced IL-1β and IL-18 in a dose-dependent manner, indicating the NLRP3 inflammasome-dependent production of IL-1β and IL-18. Both WT and NLRP3-deficient mouse macrophages stimulated with DC produced IL-10, indicating the NLRP3 inflammasome-independent production of IL-10. Recombinant IL-1β accelerated osteoclastogenesis in both RANKL-primed BMMs and RAW-D cells, whereas recombinant IL-18 and IL-10 inhibited osteoclastogenesis. These results indicate that DC induces osteoclastogenic IL-1β in an NLRP3 inflammasome-dependent manner and anti-osteogenic IL-18 and IL-10 dependently and independently of the NLRP3 inflammasome, respectively. DC may promote alveolar bone resorption via IL-1β induction in periodontitis patients, but suppress resorption via IL-18 and IL-10 induction in some circumstances.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Kavita Rawat ◽  
Anita Tewari ◽  
Madeline J Morrisson ◽  
Tor D Wager ◽  
Claudia Jakubzick

Myeloid, T and NK cells are key players in the elimination phase of cancer immunoediting, also referred to as cancer immunosurveillance. However, the role of B cells and NAbs, which are present prior to the encounter with cognate antigens, has been overlooked. One reason is due to the popular use of a single B cell-deficient mouse model, muMT mice. Cancer models using muMT mice display a similar tumor burden as their WT counterparts. Empirically, we observe what others have previously reported with muMT mice. However, using two other B cell-deficient mouse models (IgHELMD4 and CD19creDTA), we show a 3 to 5-fold increase in tumor burden relative to WT mice. In addition, using an unconventional, non-cancer-related, immune neoantigen model where hypoxic conditions and cell clustering are absent, we provide evidence that B cells and their innate, natural antibodies (NAbs) are critical for the detection and elimination of neoantigen-expressing cells. Finally, we find that muMT mice display anti-tumor immunity because of an unexpected compensatory mechanism consisting of significantly enhanced Type 1 interferon (IFN)-producing plasmacytoid dendritic cells (pDCs), which recruit a substantial number of NK cells to the tumor microenvironment compared to WT mice. Diminishing this compensatory pDC-IFN-NK cell mechanism revealed that muMT mice develop a 3 to 5-fold increase in tumor burden compared to WT mice. In summary, our findings suggest that NAbs are part of an early defense against not only microorganisms and dying cells, but precancerous cells as well.


Cell Reports ◽  
2021 ◽  
Vol 37 (3) ◽  
pp. 109851
Author(s):  
Aline Schütz ◽  
Christin Richter ◽  
Petra Weissgerber ◽  
Volodymyr Tsvilovskyy ◽  
Michael Hesse ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document