DETERMINATION OF THE RATE OF DECOMPOSITION OF ORGANIC MATTER UNDER FIELD CONDITIONS

Soil Science ◽  
1932 ◽  
Vol 34 (1) ◽  
pp. 19-24
Author(s):  
M. B. STURGIS
2021 ◽  
Vol 772 ◽  
pp. 145494
Author(s):  
Ignacio Peralta-Maraver ◽  
Rachel Stubbington ◽  
Shai Arnon ◽  
Pavel Kratina ◽  
Stefan Krause ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hidekazu Yoshida ◽  
Ryusei Kuma ◽  
Hitoshi Hasegawa ◽  
Nagayoshi Katsuta ◽  
Sin-iti Sirono ◽  
...  

AbstractIsolated silica concretions in calcareous sediments have unique shapes and distinct sharp boundaries and are considered to form by diagenesis of biogenic siliceous grains. However, the details and rates of syngenetic formation of these spherical concretions are still not fully clear. Here we present a model for concretion growth by diffusion, with chemical buffering involving decomposition of organic matter leading to a pH change in the pore-water and preservation of residual bitumen cores in the concretions. The model is compatible with some pervasive silica precipitation. Based on the observed elemental distributions, C, N, S, bulk carbon isotope and carbon preference index (CPI) measurements of the silica-enriched concretions, bitumen cores and surrounding calcareous rocks, the rate of diffusive concretion growth during early diagenesis is shown using a diffusion-growth diagram. This approach reveals that ellipsoidal SiO2 concretions with a diameter of a few cm formed rapidly and the precipitated silica preserved the bitumen cores. Our work provides a generalized chemical buffering model involving organic matter that can explain the rapid syngenetic growth of other types of silica accumulation in calcareous sediments.


CATENA ◽  
2021 ◽  
Vol 207 ◽  
pp. 105611
Author(s):  
Lixin Lin ◽  
Zhiqiu Gao ◽  
Xixi Liu ◽  
Yuan Sun
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document