EFFECT OF TEMPERATURE ON PHOSPHATE SORPTION AND DESORPTION IN TWO ACID SOILS

Soil Science ◽  
1982 ◽  
Vol 133 (3) ◽  
pp. 160-166 ◽  
Author(s):  
S. H. CHIEN ◽  
N. K. SAVANT ◽  
U. MOKWUNYE
1995 ◽  
Vol 46 (2) ◽  
pp. 239-245 ◽  
Author(s):  
D. FREESE ◽  
W.H. RIEMSDIJK ◽  
S.E.A.T.M. ZEE

1987 ◽  
Vol 109 (1) ◽  
pp. 87-94 ◽  
Author(s):  
J. Arines ◽  
Maria Sainz

SummaryA comparative study of sorption maxima (simple and double Langmuir equations) and buffer capacity of acid soils was made in order to select the most useful P-sorption parameter. Data were obtained from 20 acid soils from Galicia (north-west Spain) and selection was made by linear and multiple regressions among sorption parameters, and between these and some soil characteristics related to phosphate sorption (clay and organicmatter content, pH in NaF, and 0·5 M-CuCl2-extracted Al).The phosphate buffer capacity, determined by the slope of the regression ‘sorbed-P v. logc’, was the best parameter to represent soil phosphate sorption behaviour. 0·5 M-CuCl2- extracted Al was the edaphic characteristic which best related to sorption properties.


1990 ◽  
Vol 41 (1) ◽  
pp. 165-175 ◽  
Author(s):  
R. NAIDU ◽  
J. K. SYERSY ◽  
R. W. TILLMAN ◽  
J. H. KIRKMAN

2019 ◽  
Vol 44 (3) ◽  
pp. 267-285 ◽  
Author(s):  
Dragana Z Marković-Nikolić ◽  
Milorad D Cakić ◽  
Goran Petković ◽  
Goran S Nikolić

The sorption kinetics and thermodynamic parameters of phosphate removal from aqueous solution using quaternary ammonium–modified bottle gourd biomass as a sorbent were studied in a batch reactor. The cationic sorbent, containing trimethylammonium and hydroxypropyl groups, was obtained through the chemical reactions of the lignocellulosic Lagenaria vulgaris shell with (3-chloro-2-hydroxypropyl)trimethylammonium chloride. Experimental data of phosphate sorption from aqueous solutions of different initial concentrations (5–140 mg P L−1) have been analysed by reaction kinetics and diffusion models. The characteristic rate constants calculated by linear and non-linear regression analyses of the experimental results are presented. The phosphate sorption reaches equilibrium in 20–30 min, depending on the initial phosphate concentration. The maximum sorption capacity of quaternary ammonium–modified bottle gourd (QABG) sorbent was 18 mg P g−1 at 20 oC. The sorption system is best described by a non-linear equation of the pseudo first-order model ( R2 > 0.996). The Weber–Morris model indicated that the sorption process took place in three steps, whereby the intra-particle diffusion is not the only rate-controlling step. In addition, the effect of temperature (20 oC–50 oC) on sorption kinetics was also investigated. The various thermodynamic parameters suggest that phosphate sorption is favoured and is an exothermic process. The activation energy and the sticking probability confirmed that anion exchange is the dominant mechanism. These results provide valuable information for the potential use of agricultural residues in the treatment of wastewaters.


Author(s):  
P. R. Swann ◽  
W. R. Duff ◽  
R. M. Fisher

Recently we have investigated the phase equilibria and antiphase domain structures of Fe-Al alloys containing from 18 to 50 at.% Al by transmission electron microscopy and Mössbauer techniques. This study has revealed that none of the published phase diagrams are correct, although the one proposed by Rimlinger agrees most closely with our results to be published separately. In this paper observations by transmission electron microscopy relating to the nucleation of disorder in Fe-24% Al will be described. Figure 1 shows the structure after heating this alloy to 776.6°C and quenching. The white areas are B2 micro-domains corresponding to regions of disorder which form at the annealing temperature and re-order during the quench. By examining specimens heated in a temperature gradient of 2°C/cm it is possible to determine the effect of temperature on the disordering reaction very precisely. It was found that disorder begins at existing antiphase domain boundaries but that at a slightly higher temperature (1°C) it also occurs by homogeneous nucleation within the domains. A small (∼ .01°C) further increase in temperature caused these micro-domains to completely fill the specimen.


Author(s):  
T. Geipel ◽  
W. Mader ◽  
P. Pirouz

Temperature affects both elastic and inelastic scattering of electrons in a crystal. The Debye-Waller factor, B, describes the influence of temperature on the elastic scattering of electrons, whereas the imaginary part of the (complex) atomic form factor, fc = fr + ifi, describes the influence of temperature on the inelastic scattering of electrons (i.e. absorption). In HRTEM simulations, two possible ways to include absorption are: (i) an approximate method in which absorption is described by a phenomenological constant, μ, i.e. fi; - μfr, with the real part of the atomic form factor, fr, obtained from Hartree-Fock calculations, (ii) a more accurate method in which the absorptive components, fi of the atomic form factor are explicitly calculated. In this contribution, the inclusion of both the Debye-Waller factor and absorption on HRTEM images of a (Oll)-oriented GaAs crystal are presented (using the EMS software.Fig. 1 shows the the amplitudes and phases of the dominant 111 beams as a function of the specimen thickness, t, for the cases when μ = 0 (i.e. no absorption, solid line) and μ = 0.1 (with absorption, dashed line).


Sign in / Sign up

Export Citation Format

Share Document