maximum sorption capacity
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 71)

H-INDEX

14
(FIVE YEARS 3)

Author(s):  
V. S. Soldatov ◽  
L. N. Shachenkova ◽  
E. G. Kasandrovich ◽  
P. V. Nesteronok

Curves of potentiometric titration of fully protonized fibrous ion exchangers with potassium hydroxide against the background of 1 M KCl in the presence of chlorides of Ni2+, Со2+, Сu2+ and Ca2+ were obtained. The ion exchangers were synthesized by modifying of industrial polyacrylonitrile fiber with diethylenetriamine and triethylenetetraamine and predominantly contained functional groups R-CO-NH- (CH2CH2NH)nH (n = 2 or 3) and a small amount of carboxyl groups. The sorption of Ni2+, Со2+, Сu2+ и Ca2+by ion exchangers was calculated from the data obtained depending on the pH of the medium. It was found that the investigated ion exchangers with high selectivity sorb heavy metal ions in a wide range of acidity of solutions (pH 2–9) due to the formation of metal-polymer complexes with polyamine functional groups. The maximum sorption capacity is 1.5–2.7 and 4–5 meq/g for ion exchangers with n = 2 and 3, respectively.


Kerntechnik ◽  
2021 ◽  
Vol 86 (6) ◽  
pp. 404-410
Author(s):  
Y. Shi ◽  
W. Chen ◽  
H. Lin ◽  
Z. Gao ◽  
B. Yang ◽  
...  

Abstract In this study,90Sr was used as the test radionuclide to characterize the sorption kinetics and effects of initial 90Sr activity and remaining 90Sr in solid concentration were simulated for a near-surface repository. The study focused on the sorption characteristics of radionuclides in unsaturated groundwater environment (or vadose zone) is the important information for investigating the near-surface disposal of intermediate and low-level radioactive waste (ILLW). Moreover, the 90Sr sorption experiments reached equilibrium within 56 h, which fit to the first order sorption kinetic model, and the remaining 90Sr in mudrock samples showed obvious sorption equilibrium hysteresis, which fit to the second order sorption kinetic model. Before reaching the maximum sorption capacity, the sorption rate constant increases with 90Sr increasing; the distribution coefficient (Kd) of 56 h decreases with the remaining 90Sr decreasing. In addition, it showed that the slow sorption process dominated before the sorption reaches equilibrium. In fact, a reliable safety assessment methodology for on-going near-surface repository required a lot of the radionuclides parameters with local environment including the radionuclides sorption/desorption rate constant and maximum sorption capacity.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 7046
Author(s):  
Muhammad Ali Inam ◽  
Rizwan Khan ◽  
Kang Hoon Lee ◽  
Muhammad Akram ◽  
Zameer Ahmed ◽  
...  

Arsenic (As)-laden wastewater may pose a threat to biodiversity when released into soil and water bodies without treatment. The current study investigated the sorption properties of both As(III, V) oxyanions onto iron hydroxide (FHO) by chemical coagulation. The potential mechanisms were identified using the adsorption models, ζ-potential, X-ray diffraction (XRD) and Fourier Transform Infrared Spectrometry (FT-IR) analysis. The results indicate that the sorption kinetics of pentavalent and trivalent As species closely followed the pseudo-second-order model, and the adsorption rates of both toxicants were remarkably governed by pH as well as the quantity of FHO in suspension. Notably, the FHO formation was directly related to the amount of ferric chloride (FC) coagulant added in the solution. The sorption isotherm results show a better maximum sorption capacity for pentavalent As ions than trivalent species, with the same amount of FHO in the suspensions. The thermodynamic study suggests that the sorption process was spontaneously exothermic with increased randomness. The ζ-potential, FT-IR and XRD analyses confirm that a strong Fe-O bond with As(V) and the closeness of the surface potential of the bonded complex to the point of zero charge (pHzpc) resulted in the higher adsorption affinity of pentavalent As species than trivalent ions in most aquatic conditions. Moreover, the presence of sulfates, phosphates, and humic and salicylic acid significantly affected the As(III, V) sorption performance by altering the surface properties of Fe precipitates. The combined effect of charge neutralization, complexation, oxidation and multilayer chemisorption was identified as a major removal mechanism. These findings may provide some understanding regarding the fate, transport and adsorption properties onto FHO of As oxyanions in a complex water environment.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3263
Author(s):  
Inga Zinicovscaia ◽  
Nikita Yushin ◽  
Doina Humelnicu ◽  
Dmitrii Grozdov ◽  
Maria Ignat ◽  
...  

The adsorption capacity of two sorbents, silica SBA-15 and titanosilicate ETS-10, toward Ce(III) was tested. The obtained sorbents were characterized using X-ray diffraction, nitrogen adsorption-desorption, Scanning electron microscopy, and Fourier-transform infrared spectroscopy. The effects of solution acidity, cerium concentration, time of contact, and temperature on Ce(III) sorption were investigated. The maximum Ce(III) removal by silica SBA-15 was achieved at pH 3.0 and by titanosilicate ETS-10 at a pH range of 4.0–5.0. The Freundlich, Langmuir, and Temkin isotherm models were applied for the description of equilibrium sorption of Ce(III) by the studied absorbents. Langmuir model obeys the experimentally obtained data for both sorbents with a maximum sorption capacity of 68 and 162 mg/g for silica SBA-15 and titanosilicate ETS-10, respectively. The kinetics of the sorption were described using pseudo-first- and pseudo-second-order kinetics, Elovich, and Weber–Morris intraparticle diffusion models. The adsorption data fit accurately to pseudo-first- and pseudo-second-order kinetic models. Thermodynamic data revealed that the adsorption process was spontaneous and exothermic.


2021 ◽  
Author(s):  
Amit Kumar Dey ◽  
Abhijit Dey

Adsorption of Methylene Blue onto chemically (Na2CO3) treated ripe betel nut fibre (TRBNF) was studied using batch adsorption process for different concentrations of dye solutions (50, 100, 150 and 200 mg/L). Experiments were carried out as a function of contact time, initial solution pH (3 to11), adsorbent dose (10 gm/L – 18 gm/L) and temperature (293, 303 and 313 K). The adsorption was favoured at neutral pH and lower temperatures. Adsorption data were well described by the Langmuir isotherm and subsequently optimised using a second-order regression model by implementing face-centred CCD of Response Surface Methodology (RSM). The adsorption process followed the pseudo-second-order kinetic model. The maximum sorption capacity (qmax) was found to be 31.25 mg/g. Thermodynamic parameters suggest that the adsorption is a typical physical process, spontaneous, enthalpy driven and exothermic in nature. The maximum adsorption occurred at pH 7.0. The effect of adsorption was studied and optimum adsorption was obtained at a TRBNF dose of15 gm/L.


Author(s):  
L. Sánchez-Ponce ◽  
M. D. Granado-Castro ◽  
M. J. Casanueva-Marenco ◽  
M. D. Galindo-Riaño ◽  
M. Díaz-de-Alba

AbstractA low-cost biosorbent obtained from the Palomino Fino grape seed, a Sherry wine industry by-product, has been proposed as a way of valorising this material. The biomass was characterised obtaining values of 0.68 ± 0.05 g mL−1 for bulk density, 1.02 ± 0.09 g mL−1 for apparent density and 33.3% for porosity. The pHpzc was 5.2 and the surface negative charge value was 2.4 ± 0.2 mmol g−1. The analysis of surface morphology showed differences due to the sorption. The results showed a promising potential for chromium(VI) removal from aqueous solutions. The studies were carried out in batch scale and a 23 factorial design was applied for the optimisation of the process. A percentage of 91.7 ± 0.6% was achieved for the biosorption of Cr(VI) under optimal conditions using pH 5.5, 15 g/L of biosorbent and 8 h of contact time. The biosorption capacity showed a remarkable linearity from 0 to 2 mmol L−1 Cr(VI) and a precision of 0.64% for the removal of 1 mmol L−1 of metal. Langmuir, Freundlich and Temkin isotherm equations and the parameters of six kinetic models were used in the equilibrium modelling and identifying the mechanism of the biosorption. The combination of physical and chemical sorption mechanisms was proposed for the chromium removal with a high maximum sorption capacity (qmax = 208.3 mg g−1). Thermodynamic parameters indicated the spontaneous and endothermic nature of the chromium removal. The successful biosorption was based on the special grape seed components with a relevant content in antioxidant and lignocellulosic compounds.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5646
Author(s):  
Joanna Kluczka ◽  
Gabriela Dudek ◽  
Wojciech Pudło ◽  
Alicja Kazek-Kęsik ◽  
Roman Turczyn

An excess concentration of boron in irrigation and drinking water can negatively affect the yield of plants and the human nervous system, respectively. To meet the recommended levels, hybrid biosorbent hydrogel beads based on chitosan and manganese (II-IV) were employed for the removal of boron from aqueous media. The results showed that the biosorbent effectively removed boric acid from the aqueous medium at neutral pH over a sorption time of 2 h and the liquid/hydrogel ratio of 20 mL/g, achieving a maximum sorption capacity near 190 mg/g. The modeling of the sorption equilibrium data indicated that the Freundlich isotherm equation gave the best fit out of the isotherm models examined. A pseudo-second-order model was found to best describe the sorption kinetics. The favorable attachment of manganese to the chitosan structure enabled the sorption of boron and was confirmed by FTIR, RS, XRD, SEM and ICP-OES methods. Boron desorption from the spent biosorbent was successfully achieved in three cycles using a NaOH solution. In general, the results of this research indicate that this method is one of the possibilities for improving water quality and may contribute to reducing pollution of the aquatic environment.


2021 ◽  
Vol 13 (19) ◽  
pp. 10673
Author(s):  
Jiatao Dang ◽  
Hui Wang ◽  
Chongqing Wang

Heavy metals pollution receives worldwide attention due to great toxicity, significant bio-accumulation and non-biodegradability. Adsorption is a promising technique for removing heavy metals from wastewater. Adsorption of zinc (Zn(II)) from aqueous solution was investigated by functionalized lignocellulose derived from fallen leaves. Alkalized lignocellulose (AC), xanthated lignocellulose (XC) and carboxylated lignocellulose (CC) were characterized by Fourier transform infrared spectrum (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The effect of sorbent dosage, solution pH, sorption time and initial Zn(II) concentration on Zn(II) sorption was investigated by single-factor experiment. Sorption kinetics, isotherms and thermodynamics were examined to reveal sorption mechanism. The sorption capacity and removal rate remarkably depend on experimental variables. Zn(II) sorption onto AC, XC and CC is well described by the pseudo second order kinetics and Langmuir isotherm. The sorption process is fast, reaching sorption equilibrium at 30 min. The maximum sorption capacity of Zn(II) onto CC is 46.49 mg/g, higher than that onto AC, XC and other reported sorbents. Thermodynamic parameters indicate that Zn(II) sorption is a spontaneous process. Sorption mechanism is majorly attributed to surface complexation. This work shows the feasibility of removing toxic Zn(II) from aqueous solution by locally available biomass, providing a sustainable approach for wastewater treatment.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5511
Author(s):  
Eduard Tokar ◽  
Konstantin Maslov ◽  
Ivan Tananaev ◽  
Andrei Egorin

An Se-derivative of amidoxime was synthesized for the first time as a result of the reaction of oxidative polycondensation of N’-hydroxy-1,2,5-oxadiazole-3-carboximidamide with SeO2: its elementary units are linked to each other due to the formation of strong diselenide bridges. The element composition of the material was established, and the structure of the elementary unit was suggested. The sorption-selective properties were evaluated, and it was found that the adsorbent can be used for the selective recovery of U (VI) from liquid media with a pH of 6–9. The effect of some anions and cations on the efficiency of recovery of U (VI) was estimated. Composite materials were fabricated, in which silica gel with a content of 35, 50, and 65 wt.% was used as a matrix to be applied in sorption columns. The maximum values of adsorption of U (VI) calculated using the Langmuir equation were 620–760 mg g−1 and 370 mg g−1 for the composite and non-composite adsorbents, respectively. The increase in the kinetic parameters of adsorption in comparison with those of the non-porous material was revealed, along with the increase in the specific surface area of the composite adsorbents. In particular, the maximum sorption capacity and the rate of absorption of uranium from the solution increased two-fold.


2021 ◽  
Vol 324 ◽  
pp. 116-124
Author(s):  
Edgar Clyde R. Lopez ◽  
Nathaniel M. Saporsantos ◽  
William Ven R. Magbalon ◽  
Richard C. Aquino ◽  
Miguel Lawrence Keith S.J. Celebre ◽  
...  

In this study, the effectiveness of novel nanocomposite-coated filters consisting of biochar (BC) functionalized with sodium alginate (SA) and poly (vinyl alcohol) (PVA) was investigated for methylene (MB) blue removal. The filters were fabricated via a dip-coating method and SEM and FTIR spectroscopy confirmed the successful coating of the filters. The impact of the nanocomposite formulation and the operating parameters (initial pH and MB concentration) on the performance of the coated filters were studied. A nanocomposite composition consisting of 1.0 wt.% SA, 2.0 wt.% PVA, and 1000 ppm BC were found to be optimum, reaching as high as 96.51% MB removal. The fabricated filters were determined to be robust over a wide range of pH and initial MB concentrations. The Sips isotherm model proved to be the best-fit model for MB adsorption, where chemisorption dominates at low MB concentrations, while physisorption dominates at high MB concentrations. The filters have a maximum sorption capacity of 54.5198 mg g-1 and showed good reusability. Overall, our synthesized SA/PVA/BC-coated filters can be used to effectively remove dyes in wastewater over a wide range of operating conditions.


Sign in / Sign up

Export Citation Format

Share Document