Is real time ultrasonic bladder volume estimation reliable and valid? A systematic overview

1999 ◽  
Vol 9 (2) ◽  
pp. 172
Author(s):  
Nic Bryan
Author(s):  
Joseph Severino ◽  
Yi Hou ◽  
Ambarish Nag ◽  
Jacob Holden ◽  
Lei Zhu ◽  
...  

Real-time highly resolved spatial-temporal vehicle energy consumption is a key missing dimension in transportation data. Most roadway link-level vehicle energy consumption data are estimated using average annual daily traffic measures derived from the Highway Performance Monitoring System; however, this method does not reflect day-to-day energy consumption fluctuations. As transportation planners and operators are becoming more environmentally attentive, they need accurate real-time link-level vehicle energy consumption data to assess energy and emissions; to incentivize energy-efficient routing; and to estimate energy impact caused by congestion, major events, and severe weather. This paper presents a computational workflow to automate the estimation of time-resolved vehicle energy consumption for each link in a road network of interest using vehicle probe speed and count data in conjunction with machine learning methods in real time. The real-time pipeline can deliver energy estimates within a couple seconds on query to its interface. The proposed method was evaluated on the transportation network of the metropolitan area of Chattanooga, Tennessee. The volume estimation results were validated with ground truth traffic volume data collected in the field. To demonstrate the effectiveness of the proposed method, the energy consumption pipeline was applied to real-world data to quantify road transportation-related energy reduction because of mitigation policies to slow the spread of COVID-19 and to measure energy loss resulting from congestion.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Nalee Kim ◽  
Hong In Yoon ◽  
Jin Sung Kim ◽  
Woong Sub Koom ◽  
Jee Suk Chang ◽  
...  

Abstract Background Despite detailed instruction for full bladder, patients are unable to maintain consistent bladder filling during a 5-week pelvic radiation therapy (RT) course. We investigated the best bladder volume estimation procedure for verifying consistent bladder volume. Methods We reviewed 462 patients who underwent pelvic RT. Biofeedback using a bladder scanner was conducted before simulation and during treatment. Exact bladder volume was calculated by bladder inner wall contour based on CT images (Vctsim). Bladder volume was estimated either by bladder scanner (Vscan) or anatomical features from the presacral promontory to the bladder base and dome in the sagittal plane of CT (Vratio). The feasibility of Vratio was validated using daily megavoltage or kV cone-beam CT before treatment. Results Mean Vctsim was 335.6 ± 147.5 cc. Despite a positive correlation between Vctsim and Vscan (R2 = 0.278) and between Vctsim and Vratio (R2 = 0.424), Vratio yielded more consistent results than Vscan, with a mean percentage error of 26.3 (SD 19.6, p < 0.001). The correlation between Vratio and Vctsim was stronger than that between Vscan and Vctsim (Z-score: − 7.782, p < 0.001). An accuracy of Vratio was consistent in megavoltage or kV cone-beam CT during treatment. In a representative case, we can dichotomize for clinical scenarios with or without bowel displacement, using a ratio of 0.8 resulting in significant changes in bowel volume exposed to low radiation doses. Conclusions Bladder volume estimation using personalized anatomical features based on pre-treatment verification CT images was useful and more accurate than physician-dependent bladder scanners. Trial registration Retrospectively registered.


Heart ◽  
2008 ◽  
Vol 94 (9) ◽  
pp. 1212-1213 ◽  
Author(s):  
J Pemberton ◽  
M Jerosch-Herold ◽  
X Li ◽  
L Hui ◽  
M Silberbach ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document