scholarly journals A Conserved Tyrosine in the β2Subunit M4 Segment Is a Determinant of γ-Aminobutyric Acid Type A Receptor Sensitivity to Propofol

2007 ◽  
Vol 107 (3) ◽  
pp. 412-418 ◽  
Author(s):  
James E. Richardson ◽  
Paul S. Garcia ◽  
Kate K. O'Toole ◽  
Jason M. C. Derry ◽  
Shannon V. Bell ◽  
...  

Background The gamma-aminobutyric acid type A receptor (GABAA-R) beta subunits are critical targets for the actions for several intravenous general anesthetics, but the precise nature of the anesthetic binding sites are unknown. In addition, little is known about the role the fourth transmembrane (M4) segment of the receptor plays in receptor function. The aim of this study was to better define the propofol binding site on the GABAA-R by conducting a tryptophan scan in the M4 segment of the beta2 subunit. Methods Seven tryptophan mutations were introduced into the C-terminal end of the M4 segment of the GABAA-R beta2 subunit. GABAA-R subunit complementary DNAs were transfected into human embryonic kidney 293 cells grown on glass coverslips. After transfection (36-72 h), coverslips were transferred to a perfusion chamber to assay receptor function. Cells were whole cell patch clamped and exposed to GABA, propofol, etomidate, and pregnenolone. Chemicals were delivered to the cells using two 10-channel infusion pumps and a rapid solution exchanger. Results All tryptophan mutations were well tolerated, and with one exception, all resulted in minimal changes in receptor activation by GABA. One mutation, beta2(Y444W), selectively suppressed the ability of propofol to enhance receptor function while retaining normal sensitivity to etomidate and pregnenolone. Conclusions This is the first report of a mutation that selectively reduces propofol sensitivity without altering the action of etomidate. The reduction in propofol sensitivity is consistent with the loss of a hydrogen bond within the propofol binding site. These results also suggest a possible orientation of the propofol molecule within its binding site.

2002 ◽  
Vol 96 (4) ◽  
pp. 987-993 ◽  
Author(s):  
Pamela Flood ◽  
Kristen M. Coates

Background Droperidol is used in neuroleptanesthesia and as an antiemetic. Although its antiemetic effect is thought to be caused by dopaminergic inhibition, the mechanism of droperidol's anesthetic action is unknown. Because gamma-aminobutyric acid type A (GABAA) and neuronal nicotinic acetylcholine receptors (nAChRs) have been implicated as putative targets of other general anesthetic drugs, the authors tested the ability of droperidol to modulate these receptors. Methods gamma-Aminobutyric acid type A alpha1beta1gamma2 receptor, alpha7 and alpha4beta2 nAChRs were expressed in Xenopus oocytes and studied with two-electrode voltage clamp recording. The authors tested the ability of droperidol at concentrations from 1 nm to 100 microm to modulate activation of these receptors by their native agonists. Results Droperidol inhibited the GABA response by a maximum of 24.7 +/- 3.0%. The IC50 for inhibition was 12.6 +/- 0.47 nm droperidol. At high concentrations, droperidol (100 microm) activates the GABAA receptor in the absence of GABA. Inhibition of the GABA response is significantly greater at hyperpolarized membrane potentials. The activation of the alpha7 nAChR is also inhibited by droperidol, with an IC50 of 5.8 +/- 0.53 microm. The Hill coefficient is 0.95 +/- 0.1. Inhibition is noncompetitive, and membrane voltage dependence is insignificant. Conclusions Droperidol inhibits activation of both the GABAA alpha1beta1gamma2 and alpha7 nAChR. The submaximal GABA inhibition occurs within a concentration range such that it might be responsible for the anxiety, dysphoria, and restlessness that limit the clinical utility of high-dose droperidol anesthesia. Inhibition of the alpha7 nAChR might be responsible for the anesthetic action of droperidol.


2008 ◽  
Vol 152 (4) ◽  
pp. 546-549.e3 ◽  
Author(s):  
Naoko Asahina ◽  
Tohru Shiga ◽  
Kiyoshi Egawa ◽  
Hideaki Shiraishi ◽  
Shinobu Kohsaka ◽  
...  

Pharmacology ◽  
1992 ◽  
Vol 44 (2) ◽  
pp. 107-112 ◽  
Author(s):  
Francesco Amenta ◽  
Elena Bronzetti ◽  
Carlo Cavallotti ◽  
Laura Felici ◽  
Fabio Ferrante ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document