Droperidol Inhibits GABAAand Neuronal Nicotinic Receptor Activation

2002 ◽  
Vol 96 (4) ◽  
pp. 987-993 ◽  
Author(s):  
Pamela Flood ◽  
Kristen M. Coates

Background Droperidol is used in neuroleptanesthesia and as an antiemetic. Although its antiemetic effect is thought to be caused by dopaminergic inhibition, the mechanism of droperidol's anesthetic action is unknown. Because gamma-aminobutyric acid type A (GABAA) and neuronal nicotinic acetylcholine receptors (nAChRs) have been implicated as putative targets of other general anesthetic drugs, the authors tested the ability of droperidol to modulate these receptors. Methods gamma-Aminobutyric acid type A alpha1beta1gamma2 receptor, alpha7 and alpha4beta2 nAChRs were expressed in Xenopus oocytes and studied with two-electrode voltage clamp recording. The authors tested the ability of droperidol at concentrations from 1 nm to 100 microm to modulate activation of these receptors by their native agonists. Results Droperidol inhibited the GABA response by a maximum of 24.7 +/- 3.0%. The IC50 for inhibition was 12.6 +/- 0.47 nm droperidol. At high concentrations, droperidol (100 microm) activates the GABAA receptor in the absence of GABA. Inhibition of the GABA response is significantly greater at hyperpolarized membrane potentials. The activation of the alpha7 nAChR is also inhibited by droperidol, with an IC50 of 5.8 +/- 0.53 microm. The Hill coefficient is 0.95 +/- 0.1. Inhibition is noncompetitive, and membrane voltage dependence is insignificant. Conclusions Droperidol inhibits activation of both the GABAA alpha1beta1gamma2 and alpha7 nAChR. The submaximal GABA inhibition occurs within a concentration range such that it might be responsible for the anxiety, dysphoria, and restlessness that limit the clinical utility of high-dose droperidol anesthesia. Inhibition of the alpha7 nAChR might be responsible for the anesthetic action of droperidol.

2007 ◽  
Vol 107 (3) ◽  
pp. 412-418 ◽  
Author(s):  
James E. Richardson ◽  
Paul S. Garcia ◽  
Kate K. O'Toole ◽  
Jason M. C. Derry ◽  
Shannon V. Bell ◽  
...  

Background The gamma-aminobutyric acid type A receptor (GABAA-R) beta subunits are critical targets for the actions for several intravenous general anesthetics, but the precise nature of the anesthetic binding sites are unknown. In addition, little is known about the role the fourth transmembrane (M4) segment of the receptor plays in receptor function. The aim of this study was to better define the propofol binding site on the GABAA-R by conducting a tryptophan scan in the M4 segment of the beta2 subunit. Methods Seven tryptophan mutations were introduced into the C-terminal end of the M4 segment of the GABAA-R beta2 subunit. GABAA-R subunit complementary DNAs were transfected into human embryonic kidney 293 cells grown on glass coverslips. After transfection (36-72 h), coverslips were transferred to a perfusion chamber to assay receptor function. Cells were whole cell patch clamped and exposed to GABA, propofol, etomidate, and pregnenolone. Chemicals were delivered to the cells using two 10-channel infusion pumps and a rapid solution exchanger. Results All tryptophan mutations were well tolerated, and with one exception, all resulted in minimal changes in receptor activation by GABA. One mutation, beta2(Y444W), selectively suppressed the ability of propofol to enhance receptor function while retaining normal sensitivity to etomidate and pregnenolone. Conclusions This is the first report of a mutation that selectively reduces propofol sensitivity without altering the action of etomidate. The reduction in propofol sensitivity is consistent with the loss of a hydrogen bond within the propofol binding site. These results also suggest a possible orientation of the propofol molecule within its binding site.


2007 ◽  
Vol 107 (3) ◽  
pp. 427-436 ◽  
Author(s):  
Anders Fredriksson ◽  
Emma Pontén ◽  
Torsten Gordh ◽  
Per Eriksson

Background During the brain growth spurt, the brain develops and modifies rapidly. In rodents this period is neonatal, spanning the first weeks of life, whereas in humans it begins during the third trimester and continues 2 yr. This study examined whether different anesthetic agents, alone and in combination, administered to neonate mice, can trigger apoptosis and whether behavioral deficits occur later in adulthood. Methods Ten-day-old mice were injected subcutaneously with ketamine (25 mg/kg), thiopental (5 mg/kg or 25 mg/kg), propofol (10 mg/kg or 60 mg/kg), a combination of ketamine (25 mg/kg) and thiopental (5 mg/kg), a combination of ketamine (25 mg/kg) and propofol (10 mg/kg), or control (saline). Fluoro-Jade staining revealed neurodegeneration 24 h after treatment. The behavioral tests--spontaneous behavior, radial arm maze, and elevated plus maze (before and after anxiolytic)--were conducted on mice aged 55-70 days. Results Coadministration of ketamine plus propofol or ketamine plus thiopental or a high dose of propofol alone significantly triggered apoptosis. Mice exposed to a combination of anesthetic agents or ketamine alone displayed disrupted spontaneous activity and learning. The anxiolytic action of diazepam was less effective when given to adult mice that were neonatally exposed to propofol. Conclusion This study shows that both a gamma-aminobutyric acid type A agonist (thiopental or propofol) and an N-methyl-D-aspartate antagonist (ketamine) during a critical stage of brain development potentiated neonatal brain cell death and resulted in functional deficits in adulthood. The use of thiopental, propofol, and ketamine individually elicited no or only minor changes.


2008 ◽  
Vol 152 (4) ◽  
pp. 546-549.e3 ◽  
Author(s):  
Naoko Asahina ◽  
Tohru Shiga ◽  
Kiyoshi Egawa ◽  
Hideaki Shiraishi ◽  
Shinobu Kohsaka ◽  
...  

Pharmacology ◽  
1992 ◽  
Vol 44 (2) ◽  
pp. 107-112 ◽  
Author(s):  
Francesco Amenta ◽  
Elena Bronzetti ◽  
Carlo Cavallotti ◽  
Laura Felici ◽  
Fabio Ferrante ◽  
...  

2021 ◽  
Author(s):  
Tsukasa Kochiyama ◽  
Izumi Kawagoe ◽  
Ai Yamaguchi ◽  
Masataka Fukuda ◽  
Masakazu Hayashida

Abstract Background: Gamma-aminobutyric acid type A (GABAA) receptors are thought to play a role in the functioning of the immune system. GABAA receptors have 19 types of subunits, the components of which determine their physiological functions. However, the subunits that are expressed in immune cells during inflammation have not been fully investigated. Recent reports have shown that anesthetic agents may affect the gene expression of GABAA receptors subunits in immune cells. Therefore, we aimed to investigate the changes in GABAA receptor subunit gene expression during macrophage differentiation and propofol administration in order to clarify the relationship between the expression of GABAA receptors and the immunomodulatory effect of propofol.Methods: Human acute monocytic leukemia (THP-1) cells were differentiated into macrophage-like cells (M0 THP-1); subsequently, M0 THP-1 cells were differentiated into inflammatory M1 macrophage-like cells (M1 THP-1). Propofol was administered during the differentiation into M1 THP-1 cells. Using reverse transcriptase polymerase chain reaction, we examined which GABAA receptor subunit genes were expressed and whether there were changes in the gene expression during macrophage differentiation and propofol administration in THP-1 cells.Results: The expression of the α1, α4, β1, β2, γ1, and γ2 subunits increased during differentiation into M0 THP-1 cells. The expression of the α1, α4, β1, β2, γ2, and δ subunits decreased and that of the γ1 subunit increased during differentiation into M1 THP-1 cells. The gene expression of the α1, α4, and β2 subunits increased upon administering propofol during differentiation into M1 THP-1 cells.Conclusions: The gene expression of GABAA receptor subunits changed during macrophage differentiation in THP-1 cells. The expressions of α1 and α4 increased following propofol administration during the differentiation into M1 THP-1 cells, which may indicate that the GABAA receptor is involved in the immunosuppressive effects of propofol. This study can help in the choice of anesthetic agents for proinflammatory conditions such as highly-invasive surgery.


Sign in / Sign up

Export Citation Format

Share Document