Faculty Opinions recommendation of Bilateral inhibition of gamma-aminobutyric acid type A receptor function within the basolateral amygdala blocked propofol-induced amnesia and activity-regulated cytoskeletal protein expression inhibition in the hippocampus.

Author(s):  
Michael Avidan ◽  
Trung Tran
2008 ◽  
Vol 109 (5) ◽  
pp. 775-781 ◽  
Author(s):  
Yu Ren ◽  
Fu-Jun Zhang ◽  
Qing-Sheng Xue ◽  
Xin Zhao ◽  
Bu-Wei Yu

Background It has been reported that bilateral lesions of the basolateral amygdala complex (BLA) blocked propofol-induced amnesia of inhibitory avoidance (IA) training. Based on these results, the authors hypothesized that the amnesia effect of propofol was partly due to its impairment of memory formation in the hippocampus through activating the BLA gamma-aminobutyric acid type A receptor function. The authors determined the changes in activity-regulated cytoskeleton-associated protein (Arc) expression to be an indicator of IA memory formation. Methods Male Sprague-Dawley rats received bilateral injection of bicuculline methiodide (10, 50, or 100 pmol/0.5 microl) or saline (0.5 microl) into the BLA. Fifteen minutes later, the rats were intraperitoneally injected with either propofol (25 mg/kg) or saline. After 5 min, the one-trial IA training was conducted. Rats intraperitoneally infused with saline served as controls and only received saline injections into the BLA. Twenty-four hours later, the IA retention latency was tested. Separate groups of rats treated the same way were killed either 30 min after IA training for hippocampal Arc mRNA measurement or after 45 min for protein level quantification. Results The largest dose of bicuculline methiodide (100 pmol) not only blocked the propofol-induced amnesia but also reversed the inhibition effect of propofol on Arc protein expression in the hippocampus (P < 0.05). However, the mRNA level of Arc showed no significant changes after propofol and bicuculline methiodide administration. Conclusions The amnesic effect of propofol seems to involve the modulation of Arc protein expression in the hippocampus, occurring through a network interaction with the BLA.


2007 ◽  
Vol 107 (3) ◽  
pp. 412-418 ◽  
Author(s):  
James E. Richardson ◽  
Paul S. Garcia ◽  
Kate K. O'Toole ◽  
Jason M. C. Derry ◽  
Shannon V. Bell ◽  
...  

Background The gamma-aminobutyric acid type A receptor (GABAA-R) beta subunits are critical targets for the actions for several intravenous general anesthetics, but the precise nature of the anesthetic binding sites are unknown. In addition, little is known about the role the fourth transmembrane (M4) segment of the receptor plays in receptor function. The aim of this study was to better define the propofol binding site on the GABAA-R by conducting a tryptophan scan in the M4 segment of the beta2 subunit. Methods Seven tryptophan mutations were introduced into the C-terminal end of the M4 segment of the GABAA-R beta2 subunit. GABAA-R subunit complementary DNAs were transfected into human embryonic kidney 293 cells grown on glass coverslips. After transfection (36-72 h), coverslips were transferred to a perfusion chamber to assay receptor function. Cells were whole cell patch clamped and exposed to GABA, propofol, etomidate, and pregnenolone. Chemicals were delivered to the cells using two 10-channel infusion pumps and a rapid solution exchanger. Results All tryptophan mutations were well tolerated, and with one exception, all resulted in minimal changes in receptor activation by GABA. One mutation, beta2(Y444W), selectively suppressed the ability of propofol to enhance receptor function while retaining normal sensitivity to etomidate and pregnenolone. Conclusions This is the first report of a mutation that selectively reduces propofol sensitivity without altering the action of etomidate. The reduction in propofol sensitivity is consistent with the loss of a hydrogen bond within the propofol binding site. These results also suggest a possible orientation of the propofol molecule within its binding site.


2008 ◽  
Vol 109 (6) ◽  
pp. 998-1006 ◽  
Author(s):  
Rainer Haseneder ◽  
Stephan Kratzer ◽  
Eberhard Kochs ◽  
Veit-Simon Eckle ◽  
Walter Zieglgänsberger ◽  
...  

Background The neuronal and molecular targets of the inhalational general anesthetic xenon are a matter of debate. The current knowledge is largely based on studies using neurons in culture or heterologous expression systems. In the current study, the authors evaluated for the first time the effect of xenon on synaptic transmission in the basolateral amygdala in an in vitro brain slice preparation of the mouse. Methods A patch clamp technique was used to evaluate the effects of xenon on N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated excitatory postsynaptic currents (EPSCs), as well as on gamma-aminobutyric acid type A receptor-mediated inhibitory postsynaptic currents. The currents were either evoked upon electrical stimulation (NMDA-eEPSCs, AMPA-eEPSCs) or upon focal, laser-guided photolysis of caged l-glutamate (p-NMDA-Cs, p-AMPA-Cs). In addition, the authors investigated the effects of xenon on miniature EPSCs. Results Xenon reversibly reduced basal synaptic transmission but had no effect on gamma-aminobutyric acid type A receptor-mediated inhibitory synaptic transmission. Xenon concentration-dependently diminished NMDA-eEPSCs and p-NMDA-Cs to the same amount. Likewise, xenon-induced reduction of AMPA-eEPSCs and p-AMPA-Cs did not differ. Xenon did not affect the frequency of miniature EPSCs but reduced their amplitude. Conclusions In the current study, xenon considerably depressed NMDA and AMPA receptor-mediated synaptic transmission in the basolateral amygdala without affecting inhibitory synaptic transmission. The results provide evidence that the effects of xenon on NMDA- and AMPA-EPSCs are primarily mediated via postsynaptic mechanisms.


2008 ◽  
Vol 152 (4) ◽  
pp. 546-549.e3 ◽  
Author(s):  
Naoko Asahina ◽  
Tohru Shiga ◽  
Kiyoshi Egawa ◽  
Hideaki Shiraishi ◽  
Shinobu Kohsaka ◽  
...  

Pharmacology ◽  
1992 ◽  
Vol 44 (2) ◽  
pp. 107-112 ◽  
Author(s):  
Francesco Amenta ◽  
Elena Bronzetti ◽  
Carlo Cavallotti ◽  
Laura Felici ◽  
Fabio Ferrante ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document