The Effect of Flutamide on Systemic and Renal Hemodynamics in Zucker Diabetic Rats: Paradoxic Renal Vasodilator Response to Endothelin-1 and TXA2 Receptor Activation in Female Sex

2006 ◽  
Vol 48 (5) ◽  
pp. 191-198 ◽  
Author(s):  
Adesuyi A Leslie Ajayi ◽  
Paul Fidelis
2004 ◽  
Vol 44 (Supplement 1) ◽  
pp. S191-S194 ◽  
Author(s):  
Cipy Hofman ◽  
Bahaa Francis ◽  
Talma Rosenthal ◽  
Joseph Winaver ◽  
Irit Rubinstein ◽  
...  

1996 ◽  
Vol 27 (2) ◽  
pp. 322
Author(s):  
Jay H. Traverse ◽  
Dianne L. Judd ◽  
Todd J. Pavek ◽  
Melanie J. Crampton ◽  
Robert J. Bache

Endocrine ◽  
2006 ◽  
Vol 30 (1) ◽  
pp. 121-128 ◽  
Author(s):  
Yanfeng Ding ◽  
Ruijiao Zou ◽  
Robert L. Judd ◽  
Juming Zhong

Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Megan M Wenner ◽  
Caitlin Dow ◽  
Jared Greiner ◽  
Brian Stauffer ◽  
Christopher Desouza

Endothelin-1 (ET-1)-mediated vasoconstrictor tone is elevated in postmenopausal women (PMW), contributing to their increased cardiovascular risk. Although aerobic exercise is beneficial in reducing ET-1 system activity in men, it is unknown whether this favorable vascular effect is conferred in women. In fact, contrary to men, it is uncertain whether aerobic exercise training improves endothelial dysfunction in PMW. We tested the hypothesis that aerobic exercise training reduces ET-1-mediated vasoconstriction in PMW. We further hypothesized reductions in ET-1 vasoconstrictor tone underly exercise-induced improvements in endothelium-dependent vasodilatation in PMW. Methods: Forearm blood flow (FBF) responses to intra-arterial infusion of selective ET A receptor blockade (BQ-123, 100 nmol/min for 60 min), acetylcholine (4.0, 8.0 and 16.0 μg/100 mL tissue/min) in the absence and presence of ET A receptor blockade and sodium nitroprusside (1.0, 2.0 and 4.0 μg/100 mL tissue/min) were determined before and after a 12-week aerobic exercise training intervention in 20 healthy, sedentary PMW (56 + 1 yr). Results: All 20 PMW completed the exercise intervention, walking an average of 4.9 + 0.1 d/wk for 50 + 2 min/d at 71 + 1% of maximal heart rate. After the exercise intervention, BQ-123 elicited no significant change in resting FBF in the previously sedentary PMW compared with significant vasodilation (~25%) before exercise. FBF responses to acetylcholine were markedly higher (~25%; P<0.05) after (from 4.3 + 0.3 to 13.8 + 0.8 mL/100 ml tissue/min) vs before (from 4.1 + 0.2 to 11.3 + 0.8 mL/100 ml tissue/min) exercise training. Moreover, before exercise training the co-infusion of BQ-123 with acetylcholine enhanced (~25%; P<0.05) the vasodilator response (from 4.3 + 0.3 to 13.7 + 0.7 mL/100 mL tissue/min) compared with acetylcholine alone; after exercise training, the presence of BQ-123 did not significantly affect the vasodilator response to acetylcholine. Conclusions: These data demonstrate that aerobic exercise training reduces ET-1-mediated vasoconstriction in PMW. Furthermore, decreased ET-1-mediated vasoconstriction is an important mechanism underlying aerobic exercise-induced improvement in endothelium-dependent vasodilation in PMW.


2004 ◽  
Vol 286 (3) ◽  
pp. F451-F457 ◽  
Author(s):  
Aditi Marwaha ◽  
Anees Ahmad Banday ◽  
Mustafa F. Lokhandwala

Dopamine, via activation of renal D1 receptors, inhibits the activities of Na-K-ATPase and Na/H exchanger and subsequently increases sodium excretion. Decreased renal dopamine production and sodium excretion are associated with type I diabetes. However, it is not known whether the response to D1 receptor activation is altered in type I diabetes. The present study was designed to examine the effect of streptozotocin-induced type I diabetes on renal D1 receptor expression and function. Streptozotocin treatment of Sprague-Dawley rats caused a fourfold increase in plasma levels of glucose along with a significant decrease in insulin levels compared with control rats. Intravenous administration of SKF-38393, a D1 receptor agonist, caused a threefold increase in sodium excretion in control rats. However, SKF-38393 failed to produce natriuresis in diabetic rats. SKF-38393 caused a concentration-dependent inhibition of Na-K-ATPase activity in renal proximal tubules of control rats. However, the ability of SKF-38393 to inhibit Na-K-ATPase activity was markedly diminished in diabetic rats. D1 receptor numbers and protein abundance as determined by [3H]SCH-23390 ligand binding and Western blot analysis were markedly reduced in diabetic rats compared with control rats. Moreover, SKF-38393 failed to stimulate GTPγS binding in proximal tubular membranes from diabetic rats compared with control rats. We conclude that the natriuretic response to D1 receptor activation is reduced in type I diabetes as a result of a decrease in D1 receptor expression and defective receptor G protein coupling. These abnormalities may contribute to the sodium retention associated with type I diabetes.


1994 ◽  
Vol 266 (4) ◽  
pp. H1332-H1338 ◽  
Author(s):  
L. C. Wagerle ◽  
P. A. Degiulio

To investigate the role of vasodilator prostanoids in the CO2-induced relaxation of cerebral arterioles, the present study examined the effect of exogenous prostaglandin (PG) E2 and nonprostanoid vasodilators, adenosine and sodium nitroprusside, on the indomethacin-impaired pial arteriolar response to CO2 in newborn piglets. Reactivity of pial arterioles (52-131 microns diam) was determined using a closed cranial window with intravital microscopy. Cortical prostanoid synthesis was assessed by analyzing for select prostanoids in cerebrospinal fluid sampled from under the cranial window. Inhalation of 7% CO2 caused an elevation of cortical 6-keto-PGF1 alpha and thromboxane (Tx) B2 and increased pial arteriolar diameter by 34 +/- 5%. Two cyclooxygenase inhibitors, indomethacin (5 mg/kg i.v.) and ibuprofen (30 mg/kg i.v.), abolished the CO2-induced elevation of cortical prostanoids. Indomethacin, but not ibuprofen, blocked the CO2-induced increase in pial arteriolar diameter. The indomethacin-impaired vasodilator response to CO2 was restored when PGE2 (0.1-1 microM) was applied topically to the cortical surface. Adenosine (1-100 microM) and sodium nitroprusside (0.5 microM) only partially restored the vasodilator response to CO2. The data suggest that vasodilator prostanoids facilitate cerebrovascular relaxation to CO2 and may play a permissive role in the relaxation response of vascular smooth muscle. The fact that adenosine (adenosine 3',5'-cyclic monophosphate-mediated dilator) and sodium nitroprusside (guanosine 3',5'-cyclic monophosphate-mediated dilator), were partially effective suggests a role for those intracellular signaling pathways. We speculate that receptor activation of intracellular pathways may alter Ca2+ sensitivity of the contractile apparatus in such a way that the relaxation response to CO2 can occur.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document