scholarly journals Leaps in Haptic Technology Improve CI Outcomes

2021 ◽  
Vol 74 (9) ◽  
pp. 46
Keyword(s):  
2021 ◽  
Vol 13 (13) ◽  
pp. 7253
Author(s):  
Aqeel Farooq ◽  
Mehdi Seyedmahmoudian ◽  
Ben Horan ◽  
Saad Mekhilef ◽  
Alex Stojcevski

In view of the problem of e-commerce scams and the absence of haptic interaction, this research aims to introduce and create a tele-weight device for e-commerce shopping in smart cities. The objective is to use the proposed prototype to provide a brief overview of the possible technological advancements. When the tele-weight device is affixed over the head-mounted display, it allows the user to feel the item’s weight while shopping in the virtual store. Addressing the problem of having no physical interaction between the user (player) and a series game scene in virtual reality (VR) headsets, this research approach focuses on creating a prototype device that has two parts, a sending part and a receiving part. The sending part measures the weight of the object and transmits it over the cellular network to the receiver side. The virtual store user at the receiving side can thus realize the weight of the ordered object. The findings from this work include a visual display of the item’s weight to the virtual store e-commerce user. By introducing sustainability, this haptic technology-assisted technique can help the customer realize the weight of an object and thus have a better immersive experience. In the device, the load cell measures the weight of the object and amplifies it using the HX711 amplifier. However, some delay in the demonstration of the weight was observed during experimentation, and this indirectly altered the performance of the system. One set of the device is sited at the virtual store user premises while the sending end of the device is positioned at the warehouse. The sending end hardware includes an Arduino Uno device, an HX711 amplifier chip to amplify the weight from the load cell, and a cellular module (Sim900A chip-based) to transmit the weight in the form of an encoded message. The receiving end hardware includes a cellular module and an actuator involving a motor gear arrangement to demonstrate the weight of the object. Combining the fields of e-commerce, embedded systems, VR, and haptic sensing, this research can help create a more secure marketplace to attain a higher level of customer satisfaction.


2021 ◽  
Vol 13 (10) ◽  
pp. 255
Author(s):  
Julieta Noguez ◽  
Luis Neri ◽  
Víctor Robledo-Rella ◽  
Rosa María Guadalupe García-Castelán ◽  
Andres Gonzalez-Nucamendi ◽  
...  

Education 4.0 demands a flexible combination of digital literacy, critical thinking, and problem-solving in educational settings linked to real-world scenarios. Haptic technology incorporates the sense of touch into a visual simulator to enrich the user’s sensory experience, thus supporting a meaningful learning process. After developing several visuo-haptic simulators, our team identified serious difficulties and important challenges to achieve successful learning environments within the framework of Education 4.0. This paper presents the VIS-HAPT methodology for developing realistic visuo-haptic scenarios to promote the learning of science and physics concepts for engineering students. This methodology consists of four stages that integrate different aspects and processes leading to meaningful learning experiences for students. The different processes that must be carried out through the different stages, the difficulties to overcome and recommendations on how to face them are all described herein. The results are encouraging since a significant decrease (of approximately 40%) in the development and implementation times was obtained as compared with previous efforts. The quality of the visuo-haptic environments was also enhanced. Student perceptions of the benefits of using visuo-haptic simulators to enhance their understanding of physics concepts also improved after using the proposed methodology. The incorporation of haptic technologies in higher education settings will certainly foster better student performance in subsequent real environments related to Industry 4.0


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6834
Author(s):  
Kunio Shimada ◽  
Ryo Ikeda ◽  
Hiroshige Kikura ◽  
Hideharu Takahashi

Sensors are essential in the haptic technology of soft robotics, which includes the technology of humanoids. Haptic sensors can be simulated by the mimetic organ of perceptual cells in the human body. However, there has been little research on the morphological fabrication of cutaneous receptors embedded in a human skin tissue utilizing artificial materials. In the present study, we fabricated artificial, cell-like cutaneous receptors embedded in skin tissue mimicking human skin structure by utilizing rubber. We addressed the fabrication of five cutaneous receptors (free nerve endings, Krause and bulbs, Meissner corpuscles, Pacinian corpuscles and Ruffini endings). In addition, we investigated the effectiveness of the fabricated tissue for mechanical and thermal sensing. At first, in the production of integrated artificial skin tissue, we proposed a novel magnetic, responsive, intelligent, hybrid fluid (HF), which is suitable for developing the hybrid rubber skin. Secondly, we presented the fabrication by utilizing not only the HF rubber but our previously proposed rubber vulcanization and adhesion techniques with electrolytic polymerization. Thirdly, we conducted a mechanical and thermal sensing touch experiment with the finger. As a result, it demonstrated that intelligence as a mechanoreceptor or thermoreceptor depends on its fabric: the HF rubber sensor mimicked Krause and bulbs has the thermal and pressing sensibility, and the one mimicked Ruffini endings the shearing sensibility.


2021 ◽  
pp. 107352
Author(s):  
Logozzo Silvia ◽  
Maria Cristina Valigi ◽  
Monica Malvezzi

Author(s):  
Seiichiro Katsura

In this chapter, a novel method for preserving and reproducing human motion based on haptic technology is described. Haptic technology makes it possible to preserve and reproduce human motion using a paired master and slave system. Because it is possible to preserve motion information based on position trajectory and force input, future human support technology that will facilitate skill acquisition, physical rehabilitation will be developed and will facilitate personal adaptation, tele-communication, et cetera. Once human motions are preserved, it will be possible to process them for various applications. For example, being able to reproduce the speed and trajectory of motion will allow for adjustments that fit the desired function. As a result, the temporal and spatial coupling of perception and action can be attained. This type of physical extension technology based on haptics will be important for the future of human support in society.


Author(s):  
Heather Culbertson ◽  
Samuel B. Schorr ◽  
Allison M. Okamura

This article reviews the technology behind creating artificial touch sensations and the relevant aspects of human touch. We focus on the design and control of haptic devices and discuss the best practices for generating distinct and effective touch sensations. Artificial haptic sensations can present information to users, help them complete a task, augment or replace the other senses, and add immersiveness and realism to virtual interactions. We examine these applications in the context of different haptic feedback modalities and the forms that haptic devices can take. We discuss the prior work, limitations, and design considerations of each feedback modality and individual haptic technology. We also address the need to consider the neuroscience and perception behind the human sense of touch in the design and control of haptic devices.


2015 ◽  
Vol 781 ◽  
pp. 466-470
Author(s):  
Napol Varachitchai ◽  
Chowarit Mitsantisuk

In haptic technology, robot has to contact with objects and human operator. The robot systems must be flexible systems, high accuracy and precision during the operation for safe the human operator. So, analysis of the force response is a necessary ability to design the controller of the robot systems. This paper proposes a methodology to analyze force response by mean of spectrogram analysis. The master-slave robot based on bilateral control is used by human operator. Disturbance Observe (DOB) is used to estimate the force response instead of force sensor to improve the performance of the whole system. Finally, force response is analyzed by spectrogram. The availability of the proposed method is shown in an experiment.


Sign in / Sign up

Export Citation Format

Share Document