Peripheral Nerve Injury Reduces Analgesic Effectsof Systemic Morphine via Spinal 5-Hydroxytryptamine 3 Receptors

2014 ◽  
Vol 121 (2) ◽  
pp. 362-371 ◽  
Author(s):  
Masafumi Kimura ◽  
Hideaki Obata ◽  
Shigeru Saito

Abstract Background: Morphine produces powerful analgesic effects against acute pain, but it is not effective against neuropathic pain, and the mechanisms underlying this reduced efficacy remain unclear. Here, the authors compared the efficacy of systemic morphine between normal rats and rats with peripheral nerve injury, with a specific focus on descending serotonergic mechanisms. Methods: After L5 spinal nerve ligation injury, male Sprague–Dawley rats were subjected to behavioral testing, in vivo microdialysis of the spinal dorsal horn to determine serotonin (5-hydroxytryptamine [5-HT]) and noradrenaline release, and immunohistochemistry (n = 6 in each group). Results: Intraperitoneal administration of morphine (1, 3, or 10 mg/kg) produced analgesic effects in normal and spinal nerve ligation rats, but the effects were greater in normal rats (P < 0.001). Morphine increased 5-HT release (450 to 500% of the baseline), but not noradrenaline release, in the spinal dorsal horn via activation of serotonergic neurons in the rostral ventromedial medulla. Intrathecal pretreatment with ondansetron (3 μg), a 5-HT3 receptor antagonist, or 5,7-dihydroxytryptamine creatinine sulfate (100 μg), a selective neurotoxin for serotonergic terminals, attenuated the analgesic effect of morphine (10 mg/kg) in normal rats but increased the analgesic effect of morphine in spinal nerve ligation rats (both P < 0.05). Conclusions: Systemic administration of morphine increases 5-HT levels in the spinal cord, and the increase in 5-HT contributes to morphine-induced analgesia in the normal state but attenuates that in neuropathic pain through spinal 5-HT3 receptors. The plasticity of the descending serotonergic system may contribute to the reduced efficacy of systemic morphine in neuropathic pain.

2013 ◽  
Vol 1519 ◽  
pp. 31-39 ◽  
Author(s):  
Enji Zhang ◽  
Min-Hee Yi ◽  
Youngkwon Ko ◽  
Hyun-Woo Kim ◽  
Je Hoon Seo ◽  
...  

2015 ◽  
Vol 56 (5) ◽  
pp. 1307 ◽  
Author(s):  
Hee Youn Hwang ◽  
Enji Zhang ◽  
Sangil Park ◽  
Woosuk Chung ◽  
Sunyeul Lee ◽  
...  

Author(s):  
Ivett Dorina Szeredi ◽  
Gábor Jancsó ◽  
Orsolya Oszlács ◽  
Péter Sántha

Abstract Peripheral nerve injury is associated with spinal microgliosis which plays a pivotal role in the development of neuropathic pain behavior. Several agents of primary afferent origin causing the microglial reaction have been identified, but the type(s) of primary afferents that release these mediators are still unclear. In this study, specific labeling of C-fiber spinal afferents by lectin histochemistry and selective chemodenervation by capsaicin were applied to identify the type(s) of primary afferents involved in the microglial response. Comparative quantitative morphometric evaluation of the microglial reaction in central projection territories of intact and injured peripheral nerves in the superficial (laminae I and II) and deep (laminae III and IV) spinal dorsal horn revealed a significant, about three-fold increase in microglial density after transection of the sciatic or the saphenous nerve. Prior perineural treatment of these nerves with capsaicin, resulting in a selective defunctionalization of C-fiber afferent fibers failed to affect spinal microgliosis. Similarly, peripheral nerve injury-induced increase in microglial density was unaffected in rats treated neonatally with capsaicin known to result in a near-total loss of C-fiber dorsal root fibers. Perineural treatment with capsaicin per se did not evoke a significant increase in microglial density. These observations indicate that injury-induced spinal microgliosis may be attributed to phenotypic changes in injured myelinated primary afferent neurons, whereas the contribution of C-fiber primary sensory neurons to this neuroimmune response is negligible. Spinal myelinated primary afferents may play a hitherto unrecognized role in regulation of neuroimmune and perisynaptic microenvironments of the spinal dorsal horn.


2014 ◽  
Vol 40 (3) ◽  
pp. 438-445 ◽  
Author(s):  
Ryuji Terayama ◽  
Noriko Kishimoto ◽  
Yuya Yamamoto ◽  
Kotaro Maruhama ◽  
Hiroki Tsuchiya ◽  
...  

2011 ◽  
Vol 12 (11) ◽  
pp. 1130-1139 ◽  
Author(s):  
Kumiko Takasu ◽  
Atsushi Sakai ◽  
Hideki Hanawa ◽  
Takashi Shimada ◽  
Hidenori Suzuki

Sign in / Sign up

Export Citation Format

Share Document