beclin 1
Recently Published Documents


TOTAL DOCUMENTS

1130
(FIVE YEARS 347)

H-INDEX

93
(FIVE YEARS 9)

2022 ◽  
Vol 12 (5) ◽  
pp. 1040-1045
Author(s):  
Jingfang Zhu ◽  
Jianglin Hu

Preeclampsia (PE) causes serious harm to the health of mothers and infants. PTEN regulates cell biological behaviors, but its role in preeclampsia have not been reported. Real time PCR and Western blot detected PTEN level in the placenta of PE patients and controls. Placental trophoblastderived cell line HTR8 was assigned into NC group, PTEN group and si-PTEN inhibitor group followed by measuring PTEN level, cell proliferation by MTT assay, cell invasion by Transwell, Caspase 3 activity, Beclin-1 and Atg-5 expression as well as PI3K/Akt/HIF-1α/VEGF signaling protein by Western blot. PTEN in PE patients was significantly downregulated (P < 0.05). Transfection of PTEN siRNA significantly down-regulated PTEN, promoted cell proliferation and invasion, reduced Caspase 3 activity, increased Beclin-1 and Atg-5, and PI3K/Akt/HIF-1α/VEGF protein expression (P < 0.05). Transfection of pcDNA 3.0-PTEN up-regulated PTEN and significantly reversed the above changes (P < 0.05). In conclusion, PTEN is reduced in PE and it can regulate pre-eclampsia trophoblast autophagy possibly through PI3K/Akt/HIF-1α/VEGF signaling, suggesting that PTEN can be a potential target for PE therapy.


2022 ◽  
Author(s):  
Fei Huang ◽  
Yu Hui ◽  
Ang Li ◽  
Rishalaiti Tayier ◽  
Dilinaer Yaermaimaiti ◽  
...  

Abstract Endemic arsenism is a major disease concern in China, with arsenic poisoning and induced potential lesions key issues on a global level. The liver is the main target organ where arsenic is metabolized; chronic exposure to arsenic-induced liver fibrosis is also closely related to autophagy, however, the exact mechanisms are remain unclear. In this study, we explored the effects of NaAsO2 on apoptosis and autophagy in human hepatic stellate cells(HSC). We established a fibrosis model in the HSC line, LX-2 which was exposed to NaAsO2 for 24h, 48h, and 72h. Cells were then transfected using an autophagy double-labeled RFP-GFP-LC3 adenoviral plasmid. Laser confocal microscopy indicated significant infection efficiencies and autophagy in LX-2. Flow cytometry was also used to investigate the effects of different NaAsO2 doses on apoptosis. NaAsO2 treatment upregulated the expression of autophagic markers, including microtubule-associated protein light chain A/B(LC3), ubiquitin binding protein(SQSTM-1/P62), autophagy related genes(ATGs), recombinant human autophagy effector protein (Beclin-1), and B cell lymphoma-2(BCL-2), but downregulated mammalian target of rapamycin(mTOR). Also, α-smooth muscle actin(α-SMA) expression was significantly upregulated in all NaAsO2 groups. Furthermore, mTOR silencing via 3-methyladenine(3-MA) altered NaAsO2 induced autophagy, LC3, Beclin-1, and SQSTM-1/P62 expression were all upregulated in both NaAsO2 and 3-MA-iAs groups. Altogether, NaAsO2 induced HSC autophagy via apoptotic pathways. 3-MA inhibited LX-2 activity and reduced NaAsO2-induced autophagy which may inhibit fibrosis progression caused by this toxin.


Author(s):  
Satoshi Minami ◽  
Shuhei Nakamura ◽  
Tamotsu Yoshimori

Autophagy is a conserved cellular degradation system that maintains intracellular homeostasis. Cytoplasmic components are engulfed into double-membrane vesicles called autophagosomes, which fuse with lysosomes, and resulting in the degradation of sequestered materials. Recently, a close association between autophagy and the pathogenesis of metabolic diseases and ageing has become apparent: autophagy is dysregulated during metabolic diseases and ageing; dysregulation of autophagy is intimately associated with the pathophysiology. Rubicon (Run domain Beclin-1 interacting and cysteine-rich containing protein) has been identified as a Beclin-1 associated protein. Notably, Rubicon is one of few negative regulators of autophagy whereas many autophagy-related genes are positive regulators of autophagy. Rubicon also has autophagy-independent functions including phagocytosis and endocytosis. In this mini-review, we focus on the various roles of Rubicon in different organs in the settings of metabolic diseases and ageing, and discuss its potential role as a promising therapeutic target.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Jie Gao ◽  
Feng Min ◽  
Shasha Wang ◽  
Heng Lv ◽  
Huan Liang ◽  
...  

Objective. Remote ischemic conditioning (RIC) is a cardioprotective method in ischemia/reperfusion (I/R) injury. This study investigated the mechanism of Rho-kinase-mediated autophagy in RIC. Methods. Sixty male Sprague–Dawley rats were randomly divided into six groups: sham, I/R, RIC, I/R+fasudil, RIC+wortmannin, and RIC+fasudil+wortmannin. Throughout the experiment, mean arterial pressure and heart rate were continuously monitored. Histopathology and ultrastructure and myocardial enzymes’ expression were evaluated to determine the degree of cardiac injury. The protein expression of the Rho-kinase substrates myosin light chain (MLC) and myosin phosphatase target subunit 1 (MYPT1), autophagy-related protein light chain 3-II (LC3-II) and Beclin 1, and protein kinase B (AKT) was measured in the myocardial tissue. Results. Compared with the sham group, the mean arterial pressure and heart rate were decreased, myocardial enzyme levels were increased, and myocardial damage was aggravated in the I/R group; however, RIC improved these alterations. The expression of phosphorylated MLC and MYPT1 was lower, while LC3-II, Beclin 1, and phospho-AKT expression levels were higher in the RIC group compared with the I/R group. Obviously, treatment of the I/R group rats with fasudil, a Rho-kinase inhibitor, significantly ameliorated the I/R effects, whereas treatment of the RIC group rats with wortmannin, a phosphatidylinositol-3 kinase (PI3K) inhibitor, inhibited the RIC protective effects. Moreover, the rats in the RIC+fasudil+wortmannin group showed similar changes to those in the RIC+wortmannin group. Conclusion. These results showed that RIC protected the myocardium from I/R injury by suppressing Rho-kinase and the underlying mechanism may be related to enhancing autophagy via the PI3K/AKT pathway.


2022 ◽  
Author(s):  
Lingwen Gu ◽  
Cui Li ◽  
Xudong Peng ◽  
Hao Lin ◽  
Yawen Niu ◽  
...  

Abstract Background: Fungal keratitis is a serious infectious keratopathy related to fungal virulence and excessive inflammatory responses. Autophagy exhibits a potent ability to resolve inflammation during fungal infection. This study aimed to investigate the protective function of flavopiridol in fungal keratitis and explore its effects on autophagy.Methods: A mouse model of fungal keratitis was established and then treated with 5 μM flavopiridol. RAW 264.7 cells were treated with 200 nM flavopiridol before fungal stimulation. The severity of corneal diseases was evaluated by slit-lamp microscopy. The expression levels of cytokines were detected by RT-PCR and ELISA. The protein levels of LC3, Beclin-1 and Atg7 were determined by western blot and immunofluorescence. A Cell Counting Kit-8 assay was used to test cell viability. Autolysosomes were detected by transmission electron microscopy (TEM). An inhibitor of autophagy, 3-methyladenine (3-MA), was used to pretreat RAW 264.7 cells. Phagocytosis of RAW 264.7 cells was evaluated by counting colony forming units. A. fumigatus was incubated with flavopiridol, and the hyphae were stained with calcofluor white. Absorbance assay, crystal violet staining and adherence assay were used to detect the antifungal activity of flavopiridol.Results: Flavopiridol treatment notably reduced corneal opacity and the clinical scores of infected corneas. Compared with DMSO treatment, flavopiridol treatment greatly downregulated IL-1β, IL-6 and TNF-a expression in infected corneas. In RAW 264.7 cells, flavopiridol treatment inhibited IL-1β, IL-6 and TNF-a expression but promoted IL-10 expression. TEM images showed that more autolysosomes were presented in infected corneas and RAW 264.7 cells after flavopiridol treatment than after DMSO treatment. Flavopiridol treatment notably upregulated the protein expression of LC3, Beclin-1 and Atg7 in infected corneas as well as in RAW 264.7 cells. 3-MA pretreatment counteracted the cytokine regulation induced by flavopiridol. Moreover, flavopiridol promoted the phagocytosis of RAW 264.7 cells. Flavopiridol also exhibited antifungal activity by restricting fungal growth and limiting fungal biofilm formation and conidial adhesion. Conclusions: Flavopiridol significantly alleviated the inflammation of fungal keratitis by activating autophagy. In addition, flavopiridol promoted the phagocytosis of RAW 264.7 cells and exhibited antifungal function, indicating the potential therapeutic role of flavopiridol in fungal keratitis.


2022 ◽  
Vol 229 ◽  
pp. 113066
Author(s):  
Hongmei Zhou ◽  
Hong Ling ◽  
Yunlong Li ◽  
Xuejun Jiang ◽  
Shuqun Cheng ◽  
...  

2022 ◽  
Vol 8 (1) ◽  
pp. 7-16
Author(s):  
Adeleh Jafari ◽  
◽  
Parvin Babaei ◽  
Kambiz Rohampour ◽  
Samira Rashtiani ◽  
...  

Background: Numerous pieces of evidence support that oxidative stress is a key factor in the pathogenesis of neurodegenerative diseases, like Alzheimer’s Disease (AD). Suppression of oxidative stress is an attractive strategy and flavonoids as potent natural antioxidants are extremely noticeable. Objectives: In this study, the effects of Kaempferol (KMP) were evaluated on passive avoidance memory, hippocampal Nrf-2, and beclin-1 expression in a rat model of Aβ1-42 –induced AD. Materials & Methods: Forty male Wistar rats weighing 200-250 g were divided into five groups (n=8); sham-operated, AD model, and KMP treatment (5, 7.5, 10 mg/kg, i.p. for three weeks). Animals received an intracerebroventricular injection of amyloid-beta (1-42) to establish an AD model. Passive avoidance memory of rats was evaluated using a shuttle box on day 21; Step-Through Latency (STL) and time spent in The Dark Compartment (TDC) were recorded. Then, hippocampus homogenates were used for biochemical and molecular analysis by real-time PCR, western blot, and ELISA. Results: It was found that KMP improved memory evidenced by increased STL (P≤0.05) and decreased TDC (p≤0.01). KMP also increased the levels of Total Antioxidant Capacity (TAC) in the hippocampus of rats (P≤0.05). In addition, KMP enhanced the expression of Nrf-2 mRNA (P≤0.001) and beclin-1 protein in the hippocampus tissues (P≤0.001). Conclusion: Overall, it is suggested that the memory-improving effect of KMP is mediated, at least in part, by enhancing Nrf-2 and TAC. KMP is also able to induce autophagy through the expression of beclin-1.


Animals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 20
Author(s):  
Manuela Martano ◽  
Gennaro Altamura ◽  
Karen Power ◽  
Pierluigi Liguori ◽  
Brunella Restucci ◽  
...  

Background: It is well known that δ-bovine papillomaviruses (BPV-1, BPV-2 and BPV-13) are one of the major causative agents of equine sarcoids, the most common equine skin tumors. Different viruses, including papillomaviruses, evolved ingenious strategies to modulate autophagy, a complex process involved in degradation and recycling of old and damaged material. Methods: The aim of this study was to evaluate, by immunohistochemistry (IHC) and Western blot (WB) analysis, the expression of the main related autophagy proteins (Beclin 1, protein light chain 3 (LC3) and P62), in 35 BPV1/2 positive equine sarcoids and 5 BPV negative normal skin samples. Results: Sarcoid samples showed from strong-to-moderate cytoplasmic immunostaining, respectively, for Beclin 1 and P62 in >60% of neoplastic fibroblasts, while LC3 immunostaining was weak to moderate in ≤60% of neoplastic fibroblasts. Western blot analysis confirmed the specificity of the antibodies and revealed no activation of autophagic flux despite Beclin 1 overexpression in sarcoid samples. Conclusion: Results could suggest the activation of the initial phase of autophagy in equine sarcoids, and its impairment during the following steps. The impairment of autophagy could lead to a selection of a quiescent population of fibroblasts, which survive longer in a hypoxic microenvironment and produced more and/or altered collagen.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0256507
Author(s):  
Xianjie Zhu ◽  
Shiyou Dai ◽  
Baohua Xia ◽  
Jianbao Gong ◽  
Bingzheng Ma

Osteoarthritis (OA) is a chronic degenerative joint disease characterized by cartilage degradation. Alpha 7 nicotinic acetylcholine receptor (α7nAChR) is associated with inflammatory and metabolic responses in OA. However, the mechanisms underlying the pathological process of OA remain unclear. The aim of the present study was to examine the role and mechanisms of α7nAChR-mediated autophagy and anti-inflammatory response in chondroprotection. Monosodium iodoacetate (MIA)-induced Wistar rat OA model was used to assess the in vivo effects of the ɑ7nAChR agonist (PNU-282987). The histopathological characteristics of OA were evaluated by immunohistochemistry (IHC), and the levels of autophagy markers were determined by western blotting and transmission electron microscopy. The anti-inflammatory effect of the ɑ7nAChR agonist was assessed by IHC, quantitative real-time polymerase chain reaction, and western blotting. Parallel experiments to determine the molecular mechanisms through which the ɑ7nAChR agonist prevents OA were performed using interleukin-1β (IL-1β)-treated chondrocytes. Our results showed that PNU-282987 reduced cartilage degeneration and matrix metalloproteinase (MMP)-1 and MMP-13 expressions. Activating α7nAChR with PNU-282987 significantly promoted MIA/IL-1β-induced chondrocyte autophagy, as demonstrated by the increase in LC3-II/LC3-I ratio, Beclin-1 levels, and autophagosome number. Furthermore, treating chondrocyte with ULK1 siRNA attenuated the PNU282987-induced enhancement of LC3-II/LC3-I ratio and Beclin-1 level. Additionally, PNU282987 suppressed NF-κB/NLRP3 inflammasome activation by inhibiting the ROS/TXNIP pathway and suppressed tumor necrosis factor-ɑ and IL-1β secretion in MIA/IL-1β-treated chondrocytes. Our results demonstrate that the activation of α7nAChR promotes chondrocyte autophagy and attenuates inflammation to mitigate OA progression, providing a novel target for the treatment of OA.


Sign in / Sign up

Export Citation Format

Share Document