Utility of Thoracolumbar Low-Dose CT With Model-Based Iterative Reconstruction for Measuring Pedicle Diameter Using a Radiation Dose Less Than a One-Time Lumbar X-Ray

Spine ◽  
2020 ◽  
Vol 45 (1) ◽  
pp. 38-47 ◽  
Author(s):  
Kazutaka Masamoto ◽  
Shunsuke Fujibayashi ◽  
Bungo Otsuki ◽  
Kentaro Hara ◽  
Yasuhiro Fukushima ◽  
...  
2015 ◽  
Vol 204 (6) ◽  
pp. 1197-1202 ◽  
Author(s):  
Yookyung Kim ◽  
Yoon Kyung Kim ◽  
Bo Eun Lee ◽  
Seok Jeong Lee ◽  
Yon Ju Ryu ◽  
...  

2017 ◽  
Vol 59 (5) ◽  
pp. 553-559 ◽  
Author(s):  
Yun Hye Ju ◽  
Geewon Lee ◽  
Ji Won Lee ◽  
Seung Baek Hong ◽  
Young Ju Suh ◽  
...  

Background Reducing radiation dose inevitably increases image noise, and thus, it is important in low-dose computed tomography (CT) to maintain image quality and lesion detection performance. Purpose To assess image quality and lesion conspicuity of ultra-low-dose CT with model-based iterative reconstruction (MBIR) and to determine a suitable protocol for lung screening CT. Material and Methods A total of 120 heavy smokers underwent lung screening CT and were randomly and equally assigned to one of five groups: group 1 = 120 kVp, 25 mAs, with FBP reconstruction; group 2 = 120 kVp, 10 mAs, with MBIR; group 3 = 100 kVp, 15 mAs, with MBIR; group 4 = 100 kVp, 10 mAs, with MBIR; and group 5 = 100 kVp, 5 mAs, with MBIR. Two radiologists evaluated intergroup differences with respect to radiation dose, image noise, image quality, and lesion conspicuity using the Kruskal–Wallis test and the Chi-square test. Results Effective doses were 61–87% lower in groups 2–5 than in group 1. Image noises in groups 1 and 5 were significantly higher than in the other groups ( P < 0.001). Overall image quality was best in group 1, but diagnostic acceptability of overall image qualities in groups 1–3 was not significantly different (all P values > 0.05). Lesion conspicuities were similar in groups 1–4, but were significantly poorer in group 5. Conclusion Lung screening CT with MBIR obtained at 100 kVp and 15 mAs enables a ∼60% reduction in radiation dose versus low-dose CT, while maintaining image quality and lesion conspicuity.


Obesity ◽  
2020 ◽  
Vol 28 (11) ◽  
pp. 2083-2089
Author(s):  
Lukas Lambert ◽  
Matej Novak ◽  
Michaela Siklova ◽  
Eva Krauzova ◽  
Vladimir Stich ◽  
...  

2014 ◽  
Vol 24 (11) ◽  
pp. 2700-2708 ◽  
Author(s):  
Hyungjin Kim ◽  
Chang Min Park ◽  
Seong Ho Kim ◽  
Sang Min Lee ◽  
Sang Joon Park ◽  
...  

2016 ◽  
Vol 2 (3) ◽  
pp. 359-374 ◽  
Author(s):  
Ruoqiao Zhang ◽  
Dong Hye Ye ◽  
Debashish Pal ◽  
Jean-Baptiste Thibault ◽  
Ken D. Sauer ◽  
...  

2017 ◽  
Vol 59 (6) ◽  
pp. 740-747
Author(s):  
Marie-Louise Aurumskjöld ◽  
Marcus Söderberg ◽  
Fredrik Stålhammar ◽  
Kristina Vult von Steyern ◽  
Anders Tingberg ◽  
...  

Background In pediatric patients, computed tomography (CT) is important in the medical chain of diagnosing and monitoring various diseases. Because children are more radiosensitive than adults, they require minimal radiation exposure. One way to achieve this goal is to implement new technical solutions, like iterative reconstruction. Purpose To evaluate the potential of a new, iterative, model-based method for reconstructing (IMR) pediatric abdominal CT at a low radiation dose and determine whether it maintains or improves image quality, compared to the current reconstruction method. Material and Methods Forty pediatric patients underwent abdominal CT. Twenty patients were examined with the standard dose settings and 20 patients were examined with a 32% lower radiation dose. Images from the standard examination were reconstructed with a hybrid iterative reconstruction method (iDose4), and images from the low-dose examinations were reconstructed with both iDose4 and IMR. Image quality was evaluated subjectively by three observers, according to modified EU image quality criteria, and evaluated objectively based on the noise observed in liver images. Results Visual grading characteristics analyses showed no difference in image quality between the standard dose examination reconstructed with iDose4 and the low dose examination reconstructed with IMR. IMR showed lower image noise in the liver compared to iDose4 images. Inter- and intra-observer variance was low: the intraclass coefficient was 0.66 (95% confidence interval = 0.60–0.71) for the three observers. Conclusion IMR provided image quality equivalent or superior to the standard iDose4 method for evaluating pediatric abdominal CT, even with a 32% dose reduction.


2018 ◽  
Vol 59 (10) ◽  
pp. 1225-1231 ◽  
Author(s):  
Peter B Noël ◽  
Stephan Engels ◽  
Thomas Köhler ◽  
Daniela Muenzel ◽  
Daniela Franz ◽  
...  

Background The explosive growth of computer tomography (CT) has led to a growing public health concern about patient and population radiation dose. A recently introduced technique for dose reduction, which can be combined with tube-current modulation, over-beam reduction, and organ-specific dose reduction, is iterative reconstruction (IR). Purpose To evaluate the quality, at different radiation dose levels, of three reconstruction algorithms for diagnostics of patients with proven liver metastases under tumor follow-up. Material and Methods A total of 40 thorax–abdomen–pelvis CT examinations acquired from 20 patients in a tumor follow-up were included. All patients were imaged using the standard-dose and a specific low-dose CT protocol. Reconstructed slices were generated by using three different reconstruction algorithms: a classical filtered back projection (FBP); a first-generation iterative noise-reduction algorithm (iDose4); and a next generation model-based IR algorithm (IMR). Results The overall detection of liver lesions tended to be higher with the IMR algorithm than with FBP or iDose4. The IMR dataset at standard dose yielded the highest overall detectability, while the low-dose FBP dataset showed the lowest detectability. For the low-dose protocols, a significantly improved detectability of the liver lesion can be reported compared to FBP or iDose4 ( P = 0.01). The radiation dose decreased by an approximate factor of 5 between the standard-dose and the low-dose protocol. Conclusion The latest generation of IR algorithms significantly improved the diagnostic image quality and provided virtually noise-free images for ultra-low-dose CT imaging.


Sign in / Sign up

Export Citation Format

Share Document