scholarly journals MP05-11 THE LEARNING CURVE OF MPMRI TARGETED BIOPSY FOR THE DETECTION OF CLINICALLY SIGNICANT PROSTATE CANCER IS RELATED TO THE CHARACTERISTICS OF THE INDEX LESION

2021 ◽  
Vol 206 (Supplement 3) ◽  
Author(s):  
Armando Stabile ◽  
Elio Mazzone ◽  
Francesco Barletta ◽  
Carlo Andrea Bravi ◽  
Giuseppe Rosiello ◽  
...  
2018 ◽  
Vol 26 (2) ◽  
pp. 317-319 ◽  
Author(s):  
Yuta Inoue ◽  
So Ushijima ◽  
Takumi Shiraishi ◽  
Atsuko Fujihara ◽  
Fumiya Hongo ◽  
...  

2019 ◽  
Vol 18 (1) ◽  
pp. e1802-e1803
Author(s):  
P. Dell’Oglio ◽  
A. Stabile ◽  
L. Boeri ◽  
M. Soligo ◽  
G. Rosiello ◽  
...  

2019 ◽  
Vol 201 (Supplement 4) ◽  
Author(s):  
Paolo Dell'Oglio* ◽  
Armando Stabile ◽  
Luca Boeri ◽  
Antonio Esposito ◽  
Matteo Soligo ◽  
...  

BMJ Open ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. e041427
Author(s):  
Biming He ◽  
Rongbing Li ◽  
Dongyang Li ◽  
Liqun Huang ◽  
Xiaofei Wen ◽  
...  

IntroductionThe classical pathway for diagnosing prostate cancer is systematic 12-core biopsy under the guidance of transrectal ultrasound, which tends to underdiagnose the clinically significant tumour and overdiagnose the insignificant disease. Another pathway named targeted biopsy is using multiparametric MRI to localise the tumour precisely and then obtain the samples from the suspicious lesions. Targeted biopsy, which is mainly divided into cognitive fusion method and software-based fusion method, is getting prevalent for its good performance in detecting significant cancer. However, the preferred targeted biopsy technique in detecting clinically significant prostate cancer between cognitive fusion and software-based fusion is still beyond consensus.Methods and analysisThis trial is a prospective, single-centre, randomised controlled and non-inferiority study in which all men suspicious to have clinically significant prostate cancer are included. This study aims to determine whether a novel three-dimensional matrix positioning cognitive fusion-targeted biopsy is non-inferior to software-based fusion-targeted biopsy in the detection rate of clinically significant cancer in men without a prior biopsy. The main inclusion criteria are men with elevated serum prostate-specific antigen above 4–20 ng/mL or with an abnormal digital rectal examination and have never had a biopsy before. A sample size of 602 participants allowing for a 10% loss will be recruited. All patients will undergo a multiparametric MRI examination, and those who fail to be found with a suspicious lesion, with the anticipation of half of the total number, will be dropped. The remaining participants will be randomly allocated to cognitive fusion-targeted biopsy (n=137) and software-based fusion-targeted biopsy (n=137). The primary outcome is the detection rate of clinically significant prostate cancer for cognitive fusion-targeted biopsy and software-based fusion-targeted biopsy in men without a prior biopsy. The clinically significant prostate cancer will be defined as the International Society of Urological Pathology grade group 2 or higher.Ethics and disseminationEthical approval was obtained from the ethics committee of Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China. The results of the study will be disseminated and published in international peer-reviewed journals.Trial registration numberClinicalTrials.gov Registry (NCT04271527).


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2502
Author(s):  
August Sigle ◽  
Cordula A. Jilg ◽  
Timur H. Kuru ◽  
Nadine Binder ◽  
Jakob Michaelis ◽  
...  

Background: Systematic biopsy (SB) according to the Ginsburg scheme (GBS) is widely used to complement MRI-targeted biopsy (MR-TB) for optimizing the diagnosis of clinically significant prostate cancer (sPCa). Knowledge of the GBS’s blind sectors where sPCa is missed is crucial to improve biopsy strategies. Methods: We analyzed cancer detection rates in 1084 patients that underwent MR-TB and SB. Cancerous lesions that were missed or underestimated by GBS were re-localized onto a prostate map encompassing Ginsburg sectors and blind-sectors (anterior, central, basodorsal and basoventral). Logistic regression analysis (LRA) and prostatic configuration analysis were applied to identify predictors for missing sPCa with the GBS. Results: GBS missed sPCa in 39 patients (39/1084, 3.6%). In 27 cases (27/39, 69.2%), sPCa was missed within a blind sector, with 17/39 lesions localized in the anterior region (43.6%). Neither LRA nor prostatic configuration analysis identified predictors for missing sPCa with the GBS. Conclusions: This is the first study to analyze the distribution of sPCa missed by the GBS. GBS misses sPCa in few men only, with the majority localized in the anterior region. Adding blind sectors to GBS defined a new sector map of the prostate suited for reporting histopathological biopsy results.


Sign in / Sign up

Export Citation Format

Share Document