scholarly journals Transient Induction of ANG II-Dependent Malignant Hypertension Causes Sustained Elevation of Blood Pressure and Augmentation of the Pressor Response to ANG II in CYP1A1-REN2 Transgenic Rats

2010 ◽  
Vol 339 (6) ◽  
pp. 543-548 ◽  
Author(s):  
Catherine G. Howard ◽  
Kenneth D. Mitchell ◽  
John J. Mullins
2018 ◽  
Vol 38 (5) ◽  
Author(s):  
Lenka Sedláková ◽  
Soňa Kikerlová ◽  
Zuzana Husková ◽  
Lenka Červenková ◽  
Věra Čertíková Chábová ◽  
...  

We hypothesized that vascular actions of 20-hydroxyeicosatetraenoic acid (20-HETE), the product of cytochrome P450 (CYP450)-dependent ω-hydroxylase, potentiate prohypertensive actions of angiotensin II (ANG II) in Cyp1a1-Ren-2 transgenic rats, a model of ANG II-dependent malignant hypertension. Therefore, we evaluated the antihypertensive effectiveness of 20-HETE receptor antagonist (AAA) in this model. Malignant hypertension was induced in Cyp1a1-Ren-2 transgenic rats by activation of the renin gene using indole-3-carbinol (I3C), a natural xenobiotic. Treatment with AAA was started either simultaneously with induction of hypertension or 10 days later, during established hypertension. Systolic blood pressure (SBP) was monitored by radiotelemetry, indices of renal and cardiac injury, and kidney ANG II levels were determined. In I3C-induced hypertensive rats, early AAA treatment reduced SBP elevation (to 161 ± 3 compared with 199 ± 3 mmHg in untreated I3C-induced rats), reduced albuminuria, glomerulosclerosis index, and cardiac hypertrophy (P<0.05 in all cases). Untreated I3C-induced rats showed augmented kidney ANG II (405 ± 14 compared with 52 ± 3 fmol/g in non-induced rats, P<0.05) which was markedly lowered by AAA treatment (72 ± 6 fmol/g). Remarkably, in TGR with established hypertension, AAA also decreased SBP (from 187 ± 4 to 158 ± 4 mmHg, P<0.05) and exhibited organoprotective effects in addition to marked suppression of kidney ANG II levels. In conclusion, 20-HETE antagonist attenuated the development and largely reversed the established ANG II-dependent malignant hypertension, likely via suppression of intrarenal ANG II levels. This suggests that intrarenal ANG II activation by 20-HETE is important in the pathophysiology of this hypertension form.


1981 ◽  
Vol 241 (3) ◽  
pp. H381-H388 ◽  
Author(s):  
A. J. Brown ◽  
J. Casals-Stenzel ◽  
S. Gofford ◽  
A. F. Lever ◽  
J. J. Morton

Female Wistar rats were infused intravenously with 5% dextrose for 3 days, then with angiotensin II (ANG II) in 5% dextrose at 20 ng . kg-1 . min-1 for 7 days, and finally with dextrose for 2.5 days. ANG II raised mean arterial pressure (MAP) gradually; by the 7th day it was 49.7 mmHg higher than during the dextrose control period in the same rats. Control rats were infused with dextrose for 12.5 days; MAP did not change. Plasma ANG II concentration was measured during infusion. In hypertensive rats on the 7th day of ANG II infusion, it was six times higher than in control rats infused with dextrose. Changes of blood pressure and plasma ANG II concentration were compared in further rats infused with much larger doses of ANG II. Rats receiving 270 ng . kg-1 . min-1 for 1 h had an almost maximal direct pressor response, MAP rising 45.3 mmHg and plasma ANG II rising 32-fold compared with controls. Thus, infusion of ANG II at low dose without direct pressor effect gradually raises blood pressure to a level similar to the maximum direct pressor effect produced by larger doses of ANG II. Sodium balance and food and water intakes were also measured and did not change during prolonged infusion of ANG II at 20 ng . kg-1 . min-1. Thus, the slow pressure effect of ANG II develops at a lower and more nearly physiological plasma concentration of the peptide than do the direct pressor effect and the effects on drinking, eating, and urinary sodium excretion.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Takuto Nakamura ◽  
Masanobu Yamazato ◽  
Yusuke Ohya

Objective: Aminopeptidase A (APA) degrades of various sympathomodulatory peptides such as angiotensin (Ang) II, cholecystkinin-8, neurokinin B and kallidin. APA activity is increased in the brain of hypertensive rats. A centrally acting APA inhibitor prodrug is currently under investigation in clinical trial for treatment of hypertension. In previous reports, a role of APA in the brain on cardiovascular regulation was researched focus on only renin-angiotensin system. We previously reported that intracerebroventricular(icv) administration of APA increased blood pressure and that this pressor response was partially blocked by angiotensin receptor blocker. In this study, we evaluated a role of APA on cardiovascular regulation focusing on peptides other than Ang II. Method: Eleven weeks old Wistar Kyoto rats were used. We icv administrated 800 ng/8 μL of APA after pretreatment of following drugs, i) 8μL of artificial cerebrospinal fluid (aCSF) as a control, ii) 80 nmol/8 μL of amastatin which is a non-specific aminopeptidase inhibitor, iii) 1 nmol/8 μL of HOE-140 which is a bradykinin receptor blocker to evaluate the involvement of degradation of kallidin to bradykinin by APA. Result: i) Icv administration of APA after pretreatment of aCSF increased blood pressure rapidly. Blood pressure reached a peak within 1 minute. The elevated blood pressure decreased gradually and reached baseline blood pressure in 10 minutes. A peak pressor response is 25.5±1.4 mmHg (n=5). ii) Icv pretreatment of amastatin or HOE-140 did not change the blood pressure. A peak pressor response induced by APA is 13.1±4.1 mmHg (n=6, p<0.05 vs aCSF). iii) Icv pretreatment of HOE-140 did not change the blood pressure. A peak pressor response induced by APA is 21.2±1.8 mmHg (n=4, p<0.05 vs aCSF). Conclusion: 1) Icv administration of APA increased blood pressure by APA enzymatic activity. 2) Cardiovascular regulation of APA in the brain is due to not only degradation of Ang II to Ang III but also degradation of kallidin to bradykinin. Clinical implication: We think inhibition of APA in the brain may be a unique therapeutic target which affects several cardiovascular peptides in the brain.


Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 727-727
Author(s):  
Ovidiu Baltatu ◽  
Ben J Janssen ◽  
Ralph Plehm ◽  
Detlev Ganten ◽  
Michael Bader

P191 The brain renin-angiotensin system (RAS) system may play a functional role in the long-term and short-term control of blood pressure (BPV) and heart rate variability (HRV). To study this we recorded in transgenic rats TGR(ASrAOGEN) with low brain angiotensinogen levels the 24-h variation of BP and HR during basal and hypertensive conditions, induced by a low-dose s.c. infusion of angiotensin II (Ang II, 100 ng/kg/min) for 7 days. Cardiovascular parameters were monitored by telemetry. Short-term BPV and HRV were evaluated by spectral analysis and as a measure of baroreflex sensitivity the transfer gain between the pressure and heart rate variations was calculated. During the Ang II infusion, in SD but not TGR(ASrAOGEN) rats, the 24-h rhythm of BP was inverted (5.8 ± 2 vs. -0.4 ± 1.8 mm Hg/group of day-night differences of BP, p< 0.05, respectively). In contrast, in both the SD and TGR(ASrAOGEN) rats, the 24-h HR rhythms remained unaltered and paralleled those of locomotor activity. The increase of systolic BP was significantly reduced in TGR(ASrAOGEN) in comparison to SD rats as previously described, while the HR was not altered in TGR(ASrAOGEN) nor in SD rats. The spectral index of baroreflex sensitivity (FFT gain between 0.3-0.6 Hz) was significantly higher in TGR(ASrAOGEN) than SD rats during control (0.71 ± 0.1 vs. 0.35 ± 0.06, p<0.05), but not during Ang II infusion (0.6 ± 0.07 vs. 0.4 ± 0.1, p>0.05). These results demonstrate that the brain RAS plays an important role in mediating the effects of Ang II on the circadian variation of BP. Furthermore these data are consistent with the view that the brain RAS modulates baroreflex control of HR in rats, with AII having an inhibitory role.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Xiao C Li ◽  
Ana P Leite ◽  
Liang Zhang ◽  
Jia L Zhuo

The present study tested the hypothesis that intratubular angiotensin II (Ang II) and AT 1a receptors in the proximal tubules of the kidney plays an important role in basal blood pressure control and in the development of Ang II-induced hypertension. Mutant mice with proximal tubule-specific deletion of AT 1a receptors in the kidney, PT- Agtr1a -/- , were generated to test the hypothesis. Eight groups (n=7-12 per group) of adult male wild-type (WT) and PT- Agtr1a -/- mice were infused with or without Ang II for 2 weeks (1.5 mg/kg, i.p.). Basal systolic, diastolic, and mean arterial pressures were ~13 ± 3 mmHg lower in PT- Agtr1a -/- than WT mice ( P <0.01). Basal glomerular filtration rate (GFR), as measured using transdermal FITC-sinistrin, was significantly higher in PT- Agtr1a -/- mice (WT: 160.4 ± 7.0 μl/min vs. PT- Agtr1a -/- : 186.0 ± 6.0 μl/min, P <0.05). Basal 24 h urinary Na + excretion (U Na V) was significantly higher in PT- Agtr1a -/- than WT mice ( P <0.01). In response to Ang II infusion, both WT and PT- Agtr1a -/- mice developed hypertension, and the magnitude of the pressor response to Ang II was similar in WT (Δ43 ± 3 mmHg, P <0.01) and PT- Agtr1a -/- mice (Δ39 ± 5 mmHg, P <0.01). However, the absolute blood pressure level was still 16 ± 3 mmHg lower in PT- Agtr1a -/- mice ( P <0.01). Ang II significantly decreased GFR to 132.2 ± 7.0 μl/min in WT mice ( P <0.01), and to 129.4 ± 18.6 μl/min in PT- Agtr1a -/- mice ( P <0.01), respectively. In WT mice, U Na V increased from 139.3 ± 22.3 μmol/24 h in the control group to 196.4 ± 29.6 μmol/24 h in the Ang II-infused group ( P <0.01). In PT- Agtr1a -/- mice, U Na V increased from 172.0 ± 10.2 μmol/24 h in the control group to 264.7 ± 35.4 μmol/24 h in the Ang II-infused group ( P <0.01). The pressor response to Ang II was attenuated, while the natriuretic response was augmented by losartan in WT and PT- Agtr1a -/- mice ( P <0.01). Finally, proximal tubule-specific deletion of AT 1a receptors significantly augmented the pressure-natriuresis response and natriuretic responses to acute saline infusion ( P <0.01) or a 2% high salt diet ( P <0.01). We concluded that deletion of AT 1a receptors selectively in the proximal tubules lowers basal blood pressure and attenuates Ang II-induced hypertension by increasing GFR and promoting the natriuretic response in PT- Agtr1a -/- mice.


Sign in / Sign up

Export Citation Format

Share Document