basal blood pressure
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 9)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Arthur D. Zimmerman ◽  
Laci Mackay ◽  
Robert J. Kemppainen ◽  
Melaney A. Jones ◽  
Casey C. Read ◽  
...  

Atrazine is one of the most commonly used pre-emergence and early post-emergence herbicides in the world. We have shown previously that atrazine does not directly stimulate the pituitary or adrenal to trigger hormone release but acts centrally to activate a stress-like activation of the hypothalamic-pituitary-adrenal axis. In doing so, atrazine treatment has been shown to cause adrenal morphology changes characteristic of repeated stress. In this study, adrenals from atrazine treated and stressed animals were directly compared after 4 days of atrazine treatment or restraint stress. Both atrazine and stressed animals displayed reduced adrenocortical zona glomerulosa thickness and aldosterone synthase (CYP11B2) expression, indicative of repeated adrenal stimulation by adrenocorticotropic hormone. To determine if reduced CYP11B2 expression resulted in attenuated aldosterone synthesis, stressed and atrazine treated animals were challenged with angiotensin II (Ang II). As predicted, stressed animals produced less aldosterone compared to control animals when stimulated. However, atrazine treated animals had higher circulating aldosterone concentrations compared to both stressed and control groups. Ang II-induced aldosterone release was also potentiated in atrazine pretreated human adrenocortical carcinoma cells (H295R). Atrazine pretreated did not alter the expression of the rate limiting steroidogenic StAR protein or angiotensin II receptor 1. Atrazine treated animals also presented with higher basal blood pressure than vehicle treated control animals suggesting sustained elevations in circulating aldosterone levels. Our results demonstrate that treatment with the widely used herbicide, atrazine, directly increases stimulated production of aldosterone in adrenocortical cells independent of expression changes to rate limiting steroidogenic enzymes.


2021 ◽  
Vol 22 (8) ◽  
pp. 4179
Author(s):  
Dominik S. Skiba ◽  
Piotr Szczepaniak ◽  
Mateusz Siedliński ◽  
Piotr Poznański ◽  
Marzena Łazarczyk ◽  
...  

The opioid system is well-known for its role in modulating nociception and addiction development. However, there are premises that the endogenous opioid system may also affect blood pressure. The main goal of the present study was to determine the impact of different endogenous opioid system activity and its pharmacological blockade on blood pressure. Moreover, we examined the vascular function in hyper- and hypoactive states of the opioid system and its pharmacological modification. In our study, we used two mouse lines which are divergently bred for high (HA) and low (LA) swim stress-induced analgesia. The obtained results indicated that individuals with low endogenous opioid system activity have higher basal blood pressure compared to those with a hyperactive opioid system. Additionally, naloxone administration only resulted in the elevation of blood pressure in HA mice. We also showed that the hypoactive opioid system contributes to impaired vascular relaxation independent of endothelium, which corresponded with decreased guanylyl cyclase levels in the aorta. Together, these data suggest that higher basal blood pressure in LA mice is a result of disturbed mechanisms in vascular relaxation in smooth muscle cells. We believe that a novel mechanism which involves endogenous opioid system activity in the regulation of blood pressure will be a promising target for further studies in hypertension development.


Author(s):  
Monalisa Padhee ◽  
I. Caroline McMillen ◽  
Song Zhang ◽  
Severence M. MacLaughlin ◽  
James A. Armitage ◽  
...  

Abstract Nutrition during the periconceptional period influences postnatal cardiovascular health. We determined whether in vitro embryo culture and transfer, which are manipulations of the nutritional environment during the periconceptional period, dysregulate postnatal blood pressure and blood pressure regulatory mechanisms. Embryos were either transferred to an intermediate recipient ewe (ET) or cultured in vitro in the absence (IVC) or presence of human serum (IVCHS) and a methyl donor (IVCHS+M) for 6 days. Basal blood pressure was recorded at 19–20 weeks after birth. Mean arterial pressure (MAP) and heart rate (HR) were measured before and after varying doses of phenylephrine (PE). mRNA expression of signaling molecules involved in blood pressure regulation was measured in the renal artery. Basal MAP did not differ between groups. Baroreflex sensitivity, set point, and upper plateau were also maintained in all groups after PE stimulation. Adrenergic receptors alpha-1A (αAR1A), alpha-1B (αAR1B), and angiotensin II receptor type 1 (AT1R) mRNA expression were not different from controls in the renal artery. These results suggest there is no programmed effect of ET or IVC on basal blood pressure or the baroreflex control mechanisms in adolescence, but future studies are required to determine the impact of ET and IVC on these mechanisms later in the life course when developmental programming effects may be unmasked by age.


2020 ◽  
Vol 21 (22) ◽  
pp. 8536
Author(s):  
Patricio Araos ◽  
Stefanny Figueroa ◽  
Cristián A. Amador

It is well accepted that the immune system and some cells from adaptive and innate immunity are necessary for the initiation/perpetuation of arterial hypertension (AH). However, whether neutrophils are part of this group remains debatable. There is evidence showing that the neutrophil/lymphocyte ratio correlates with AH and is higher in non-dipper patients. On the other hand, the experimental neutrophil depletion in mice reduces basal blood pressure. Nevertheless, their participation in AH is still controversial. Apparently, neutrophils may modulate the microenvironment in blood vessels by increasing oxidative stress, favoring endothelial disfunction. In addition, neutrophils may contribute to the tissue infiltration of immune cells, secreting chemoattractant chemokines/cytokines and promoting the proinflammatory phenotype, leading to AH development. In this work, we discuss the potential role of neutrophils in AH by analyzing different mechanisms proposed from clinical and basic studies, with a perspective on cardiovascular and renal damages relating to the hypertensive phenotype.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Xiao C Li ◽  
Ana P Leite ◽  
Liang Zhang ◽  
Jia L Zhuo

The present study tested the hypothesis that intratubular angiotensin II (Ang II) and AT 1a receptors in the proximal tubules of the kidney plays an important role in basal blood pressure control and in the development of Ang II-induced hypertension. Mutant mice with proximal tubule-specific deletion of AT 1a receptors in the kidney, PT- Agtr1a -/- , were generated to test the hypothesis. Eight groups (n=7-12 per group) of adult male wild-type (WT) and PT- Agtr1a -/- mice were infused with or without Ang II for 2 weeks (1.5 mg/kg, i.p.). Basal systolic, diastolic, and mean arterial pressures were ~13 ± 3 mmHg lower in PT- Agtr1a -/- than WT mice ( P <0.01). Basal glomerular filtration rate (GFR), as measured using transdermal FITC-sinistrin, was significantly higher in PT- Agtr1a -/- mice (WT: 160.4 ± 7.0 μl/min vs. PT- Agtr1a -/- : 186.0 ± 6.0 μl/min, P <0.05). Basal 24 h urinary Na + excretion (U Na V) was significantly higher in PT- Agtr1a -/- than WT mice ( P <0.01). In response to Ang II infusion, both WT and PT- Agtr1a -/- mice developed hypertension, and the magnitude of the pressor response to Ang II was similar in WT (Δ43 ± 3 mmHg, P <0.01) and PT- Agtr1a -/- mice (Δ39 ± 5 mmHg, P <0.01). However, the absolute blood pressure level was still 16 ± 3 mmHg lower in PT- Agtr1a -/- mice ( P <0.01). Ang II significantly decreased GFR to 132.2 ± 7.0 μl/min in WT mice ( P <0.01), and to 129.4 ± 18.6 μl/min in PT- Agtr1a -/- mice ( P <0.01), respectively. In WT mice, U Na V increased from 139.3 ± 22.3 μmol/24 h in the control group to 196.4 ± 29.6 μmol/24 h in the Ang II-infused group ( P <0.01). In PT- Agtr1a -/- mice, U Na V increased from 172.0 ± 10.2 μmol/24 h in the control group to 264.7 ± 35.4 μmol/24 h in the Ang II-infused group ( P <0.01). The pressor response to Ang II was attenuated, while the natriuretic response was augmented by losartan in WT and PT- Agtr1a -/- mice ( P <0.01). Finally, proximal tubule-specific deletion of AT 1a receptors significantly augmented the pressure-natriuresis response and natriuretic responses to acute saline infusion ( P <0.01) or a 2% high salt diet ( P <0.01). We concluded that deletion of AT 1a receptors selectively in the proximal tubules lowers basal blood pressure and attenuates Ang II-induced hypertension by increasing GFR and promoting the natriuretic response in PT- Agtr1a -/- mice.


Hypertension ◽  
2020 ◽  
Vol 76 (3) ◽  
pp. 776-784
Author(s):  
Yiwen Li ◽  
Qadeer Aziz ◽  
Naomi Anderson ◽  
Leona Ojake ◽  
Andrew Tinker

In the endothelium, ATP-sensitive potassium (K ATP ) channels are thought to couple cellular metabolism with membrane excitability, calcium entry, and endothelial mediator release. We hypothesized that endothelial K ATP channels have a broad role protecting against high blood pressure and atherosclerosis. Endothelial-specific Kir6.1 KO mice (eKO) and eKO mice on an apolipoprotein E KO background were generated (A-eKO) to investigate the role of K ATP channels in the endothelium. Basal blood pressure was not elevated in eKO mice. However, when challenged with a high-salt diet and the eNOS inhibitor L-NAME, eKO mice became more hypertensive than their littermate controls. In aorta, NO release at least partly contributes to the endothelium-dependent vasorelaxation induced by pinacidil. In A-eKO mice atherosclerotic plaque density was significantly greater than in their littermate controls when challenged with a high-fat diet, particularly in the aortic arch region. Levels of endothelial dysfunction markers were higher in eKO compared with WT mice; however, these were not significant for A-eKO mice compared with their littermate controls. Furthermore, decreased vascular reactivity was observed in the mesenteric arteries of A-eKO mice, but not in aorta when on a high-fat diet. Our data support a role for endothelial Kir6.1-containing K ATP channels in the endothelial protection against environmental stressors: the maintenance of blood pressure homeostasis in response to high salt and endothelial integrity when challenged with a high-fat diet.


2019 ◽  
Vol 316 (6) ◽  
pp. F1141-F1150 ◽  
Author(s):  
Jing Li ◽  
Sylvia Cechova ◽  
Lina Wang ◽  
Brant E. Isakson ◽  
Thu H. Le ◽  
...  

Hypertension affects over 1 billion people worldwide and increases the risk for heart failure, stroke, and chronic kidney disease. Despite high prevalence and devastating impact, its etiology still remains poorly understood for most hypertensive cases. Rcn2, which encodes reticulocalbin 2, is a candidate gene for atherosclerosis that we have previously reported in mice. Here, we identified Rcn2 as a novel regulator of blood pressure in mice. Rcn2 was abundantly expressed in the endothelium and adventitia of normal arteries and was dramatically upregulated in the medial layer of the artery undergoing structural remodeling. Deletion of Rcn2 lowered basal blood pressure and attenuated ANG II-induced hypertension in C57BL/6 mice. siRNA knockdown of Rcn2 dramatically increased production of the nitric oxide (NO) breakdown products nitrite and nitrate by endothelial cells but not by smooth muscle cells. Isolated carotid arteries from Rcn2−/− mice showed an increased sensitivity to the ACh-induced NO-mediated relaxant response compared with arteries of Rcn2+/+ mice. Analysis of a recent meta-data set showed associations of genetic variants near RCN2 with blood pressure in humans. These data suggest that Rcn2 regulates blood pressure and contributes to hypertension through actions on endothelial NO synthase.


2019 ◽  
Vol 51 (4) ◽  
pp. 97-108 ◽  
Author(s):  
Xiao C. Li ◽  
Xiaowen Zheng ◽  
Xu Chen ◽  
Chunling Zhao ◽  
Dongmin Zhu ◽  
...  

The sodium (Na+)/hydrogen (H+) exchanger 3 (NHE3) and sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) are two of the most important Na+ transporters in the proximal tubules of the kidney. On the apical membrane side, NHE3 primarily mediates the entry of Na+ into and the exit of H+ from the proximal tubules, directly and indirectly being responsible for reabsorbing ~50% of filtered Na+ in the proximal tubules of the kidney. On the basolateral membrane side, Na+/K+-ATPase serves as a powerful engine driving Na+ out of, while pumping K+ into the proximal tubules against their concentration gradients. While the roles of NHE3 and Na+/K+-ATPase in proximal tubular Na+ transport under in vitro conditions are well recognized, their respective contributions to the basal blood pressure regulation and angiotensin II (ANG II)-induced hypertension remain poorly understood. Recently, we have been fortunate to be able to use genetically modified mouse models with global, kidney- or proximal tubule-specific deletion of NHE3 to directly determine the cause and effect relationship between NHE3, basal blood pressure homeostasis, and ANG II-induced hypertension at the whole body, kidney and/or proximal tubule levels. The purpose of this article is to review the genetic and genomic evidence for an important role of NHE3 with a focus in the regulation of basal blood pressure and ANG II-induced hypertension, as we learned from studies using global, kidney- or proximal tubule-specific NHE3 knockout mice. We hypothesize that NHE3 in the proximal tubules is necessary for maintaining basal blood pressure homeostasis and the development of ANG II-induced hypertension.


2019 ◽  
Vol 20 (1) ◽  
pp. 147032031983440 ◽  
Author(s):  
Zhongming Zhang ◽  
Yijing Zhang ◽  
Yan Wang ◽  
Shengchen Ding ◽  
Chenhui Wang ◽  
...  

Introduction: Brain-derived neurotropic factor (BDNF) is expressed throughout the central nervous system and peripheral organs involved in the regulation of blood pressure, but the systemic effects of BDNF in the control of blood pressure are not well elucidated. Materials and methods: We utilized loxP flanked BDNF male mice to cross with nestin-Cre female mice to generate nerve system BDNF knockdown mice, nestin-BDNF (+/–), or injected Cre adenovirus into the subfornical organ to create subfornical organ BDNF knockdown mice. Histochemistry was used to verify injection location. Radiotelemetry was employed to determine baseline blood pressure and pressor response to angiotensin II (1000 ng/kg/min). Real-time polymerase chain reaction was used to measure the expression of renin–angiotensin system components in the laminal terminalis and peripheral organs. Results: Nestin-BDNF (+/–) mice had lower renin–angiotensin system expression in the laminal terminalis and peripheral organs including the gonadal fat pad, and a lower basal blood pressure. They exhibited an attenuated hypertensive response and a weak or similar modification of renin–angiotensin system component expression to angiotensin II infusion. Subfornical organ BDNF knockdown was sufficient for the attenuation of angiotensin II-induced hypertension. Conclusion: Central BDNF, especially subfornical organ BDNF is involved in the maintenance of basal blood pressure and in augmentation of hypertensive response to angiotensin II through systemic regulation of the expression of renin–angiotensin system molecules.


2018 ◽  
Vol 8 (6) ◽  
pp. 307
Author(s):  
Jomkarn Naphatthalung ◽  
Lian Suan Cing ◽  
Kanyanatt Kanokwiroon ◽  
Nisaudah Radenahmad ◽  
Chaweewan Jansakul

Background: Cardiovascular disease is the leading cause of death. The etiology of this disease is multifactorial, with unhealthy nutrition being one of the main risk factors. Diets high in animal fats and saturated fatty acid have been associated with an increased risk for cardiovascular diseases. However, the results of investigations on the effects of lard (LO)- and palm oil (PO) on cardiovascular risk are still controversial due to the dosages used and the age of the animals investigated. Objective: We investigated whether LO or PO consumption led to different effects on blood pressure, vascular functions, and lipid profiles within middle-aged rats. Methods: The study was performed in middle-aged male rats, n = 6 for each group. LO, PO, or distilled water (control) 1 or 3 ml/kg were orally gavaged once a day for 6 weeks. Basal blood pressure and heart rate were measured in anesthetized rats. Fasting serum lipids were measured by enzymatic methods. The vascular functions of isolated thoracic aorta were studied using pharmacological techniques in the absence or presence of N-nitro-L-arginine, a nitric oxide synthase (eNOS) inhibitor and or DL-propargylglycine (PAG), a cystothionine-γ-lyase (CSE) inhibitor. Additionally, the aortic wall eNOS and CSE protein expression were measured by Western blotting.Results: In comparison to the control group (distilled water, DW), no differences were observed in any of the parameters studied after the rats took 1 ml/kg of LO or PO. However, PO caused an increase in neutrophil/lymphocyte ratio and body fat. At 3 ml/kg dosage, LO caused increased basal blood pressure (LO, 153.4 ± 3.2; DW, 131.4 ± 3.2 mm Hg for systolic blood pressure and LO, 130.9 ± 2.5; DW, 107.9 ± 5.8 mmHg for diastolic blood pressure) body and liver cell lipid accumulation, while PO led to increased body fat and fasting serum triglyceride (PO, 131.5 ± 13.2; DW, 91.8 ± 4.8 mg %). Neither LO nor PO treatment had any effect on vascular contraction to phenylephrine, except in the presence of PAG which led to an increased contractile response to phenylephrine. PO but not LO treatment caused increased vascular wall CSE protein expression.Conclusion: The results document how both LO and PO at a dose of 3 ml/kg (corresponding to three servings of Thai fast food) cause increased cardiovascular risk factors. However, the blood vessel H2S production increased while the lower dose had a minimal effect.Keywords: Lard oil; Palm oil; blood vessel; liver lipid; NO; H2S


Sign in / Sign up

Export Citation Format

Share Document