scholarly journals Lupus podocytopathy superimposed on diabetic glomerulosclerosis

Medicine ◽  
2021 ◽  
Vol 100 (37) ◽  
pp. e27077
Author(s):  
Lin Liu ◽  
Brian Murray ◽  
John E. Tomaszewski
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hend H. Abdelnabi

Abstract Background Lupus podocytopathy (LP) is a renal affection described in systemic lupus erythematosus (SLE) patients with nephrotic range proteinuria, characterized by diffuse foot process effacement without immune deposits and glomerular proliferation. This study describes LP, its pathological features and outcomes of pediatric (p-SLE) patients in comparison to the usual lupus nephritis (LN) cases. Methodology A retrospective cohort study conducted on a 10-year registration (2010–2019) of 140 p-SLE patients at the Pediatric Department, Tanta University. Histopathological analysis with light microscopy (LM) and immunofluorescence (IF) of all renal biopsies were evaluated according to the International Society of Nephrology Renal Pathology Society (ISN/RPS) grading system. In addition, some biopsies were examined with electron microscopy (EM). Results Eighty-six p-SLE cases (61.4%) had renal involvement; seventy-nine biopsies (91.86%) of them met the classification criteria of LN as defined by ISN/RPS system. Five biopsies were normal (MCD) and two showed focal segmental sclerosis (FSGN) that did not meet any known classification of LN. Hence, they were reevaluated using EM that revealed diffuse effaced podocytes without glomerular sub-epithelial, endocapillary or basement membrane immune deposits, and were classified as having lupus podocytopathy, representing (8.14%) of all LN biopsies. Those seven cases showed good response to steroids with a complete remission duration of 3.40 ± 1.95 weeks. However, some case had 1–3 relapses during the duration of follow up. Conclusions LP is a spectrum of p-SLE, not an association as it is related to disease activity and its initial presentation.


Endocrinology ◽  
2012 ◽  
Vol 153 (12) ◽  
pp. 5888-5895 ◽  
Author(s):  
Paola Catanuto ◽  
Alessia Fornoni ◽  
Simone Pereira-Simon ◽  
Fayi Wu ◽  
Kerry L. Burnstein ◽  
...  

Abstract We recently showed that 17β-estradiol (E2) treatment ameliorated type 2 diabetic glomerulosclerosis in mice in part by protecting podocyte structure and function. Progressive podocyte damage is characterized by foot process effacement, vacuolization, detachment of podocytes from the glomerular basement membrane, and apoptosis. In addition, podocytes are highly dependent on the preservation of their actin cytoskeleton to ensure proper function and survival. Because E2 administration prevented podocyte damage in our study on diabetic db/db mice and has been shown to regulate both actin cytoskeleton and apoptosis in other cell types and tissues, we investigated whether actin remodeling and apoptosis were prevented in podocytes isolated from E2-treated diabetic db/db mice. We performed G-actin/F-actin assays, Western analysis for Hsp25 expression, Ras-related C3 botulinum toxin substrate 1 (Rac1) activity, and apoptosis assays on previously characterized podocytes isolated from both in vivo-treated placebo and E2 female db/db mice. We found that in vivo E2 protects against a phenotype change in the cultured podocytes characterized by a percent increase of F-actin vs. G-actin, suppression of Hsp25 expression and transcriptional activation, increase of Rac1 activity, and decreased apoptotic intermediates. We conclude from these studies that E2 treatment protects against podocyte damage and may prevent/reduce diabetes-induced kidney disease.


1999 ◽  
Vol 14 (8) ◽  
pp. 2053-2053
Author(s):  
Maite Rivera ◽  
Roberto Marcén ◽  
Francisco Mampaso ◽  
Mariana Arranz ◽  
Joaquín Ortuño

Author(s):  
R. A. Camerini-Davalos ◽  
A. S. Reddi ◽  
T. H. Ehrenreich ◽  
L. H. Strugatz ◽  
W. Oppermann

Sign in / Sign up

Export Citation Format

Share Document