rac1 activity
Recently Published Documents


TOTAL DOCUMENTS

206
(FIVE YEARS 52)

H-INDEX

38
(FIVE YEARS 4)

Cancers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 255
Author(s):  
Hyo-Jin Kim ◽  
Ki-Jun Ryu ◽  
Minju Kim ◽  
Taeyoung Kim ◽  
Seon-Hee Kim ◽  
...  

Rho GDP dissociation inhibitor 2 (RhoGDI2), a regulator of Rho family GTPase, has been known to promote tumor growth and malignant progression in gastric cancer. We previously showed that RhoGDI2 positively regulates Rac1 activity and Rac1 activation is critical for RhoGDI2-induced gastric cancer cell invasion. In this study, to identify the precise molecular mechanism by which RhoGDI2 activates Rac1 activity, we performed two-hybrid screenings using yeast and found that RhoGDI2 plays an important role in the interaction between Rac1, Filamin A and Rac1 activation in gastric cancer cells. Moreover, we found that Filamin A is required for Rac1 activation and the invasive ability of gastric cancer cells. Depletion of Filamin A expression markedly reduced Rac1 activity in RhoGDI2-expressing gastric cancer cells. The migration and invasion ability of RhoGDI2-expressing gastric cancer cells also substantially decreased when Filamin A expression was depleted. Furthermore, we found that Trio, a Rac1-specific guanine nucleotide exchange factor (GEF), is critical for Rac1 activation and the invasive ability of gastric cancer cells. Therefore, we conclude that RhoGDI2 increases Rac1 activity by recruiting Rac1 to Filamin A and enhancing the interaction between Rac1 and Trio, which is critical for the invasive ability of gastric cancer cells.


Theranostics ◽  
2022 ◽  
Vol 12 (3) ◽  
pp. 1303-1320
Author(s):  
Chao Tang ◽  
Ximei Wu ◽  
Qianlei Ren ◽  
Minli Yao ◽  
Shouying Xu ◽  
...  

Development ◽  
2021 ◽  
Author(s):  
Brenda Canales Coutiño ◽  
Roberto Mayor

Cells are permanently exposed to a multitude of different kind of signals; however how cells respond to simultaneous extracellular signals within a complex in vivo environment is poorly understood. Here, we studied the role of the mechanosensitive ion channel Piezo1 on the migration of the neural crest (NC), a multipotent embryonic cell population. We identify that Piezo1 is required for the migration of Xenopus cephalic NC. We show that loss of Piezo1 promotes focal adhesion turnover and cytoskeletal dynamics by controlling Rac1 activity, leading to increased speed of migration. Moreover, overactivation of Rac1, due to Piezo1 inhibition, counteracts cell migration inhibitory signals by Semaphorins 3A and 3F, generating aberrant neural crest invasion in vivo. Thus, we find that, for directional migration in vivo, neural crest cells require a tight regulation of Rac1, by Semaphorins and Piezo1. We reveal here that a balance between a myriad of signals through Rac1 dictates cell migration in vivo, a mechanism that is likely to be conserved in other cell migration processes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anna Bianchi-Smiraglia ◽  
David W. Wolff ◽  
Daniel J. Marston ◽  
Zhiyong Deng ◽  
Zhannan Han ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anna Bianchi-Smiraglia ◽  
David W. Wolff ◽  
Daniel J. Marston ◽  
Zhiyong Deng ◽  
Zhannan Han ◽  
...  

AbstractPhysiological changes in GTP levels in live cells have never been considered a regulatory step of RAC1 activation because intracellular GTP concentration (determined by chromatography or mass spectrometry) was shown to be substantially higher than the in vitro RAC1 GTP dissociation constant (RAC1-GTP Kd). Here, by combining genetically encoded GTP biosensors and a RAC1 activity biosensor, we demonstrated that GTP levels fluctuating around RAC1-GTP Kd correlated with changes in RAC1 activity in live cells. Furthermore, RAC1 co-localized in protrusions of invading cells with several guanylate metabolism enzymes, including rate-limiting inosine monophosphate dehydrogenase 2 (IMPDH2), which was partially due to direct RAC1-IMPDH2 interaction. Substitution of endogenous IMPDH2 with IMPDH2 mutants incapable of binding RAC1 did not affect total intracellular GTP levels but suppressed RAC1 activity. Targeting IMPDH2 away from the plasma membrane did not alter total intracellular GTP pools but decreased GTP levels in cell protrusions, RAC1 activity, and cell invasion. These data provide a mechanism of regulation of RAC1 activity by local GTP pools in live cells.


Author(s):  
Apurva Gahankari ◽  
Chunmin Dong ◽  
Garrett Bartoletti ◽  
Maria Galazo ◽  
Fenglei He

Mutations in RAC1 allele are implicated in multiple brain tumors, indicating a rigorous control of Rac1 activity is required for neural tissue normal development and homeostasis. To understand how elevated Rac1 activity affects neural crest cells (NCCs) development, we have generated Rac1CA;Wnt1-Cre2 mice, in which a constitutively active Rac1G12V mutant is expressed specifically in NCCs derivatives. Our results revealed that augmented Rac1 activity leads to enlarged midbrain and altered cell density, accompanied by increased NCCs proliferation rate and misrouted cell migration. Interestingly, our experimental data also showed that elevated Rac1 activity in NCCs disrupts regionalization of dopaminergic neuron progenitors in the ventral midbrain and impairs their differentiation. These findings shed light on the mechanisms of RAC1 mutation correlated brain tumor at the cellular and molecular level.


Author(s):  
Anna Longatti ◽  
Luisa Ponzoni ◽  
Edoardo Moretto ◽  
Giorgia Giansante ◽  
Norma Lattuada ◽  
...  

AbstractRho GTPases are a class of G-proteins involved in several aspects of cellular biology, including the regulation of actin cytoskeleton. The most studied members of this family are RHOA and RAC1 that act in concert to regulate actin dynamics. Recently, Rho GTPases gained much attention as synaptic regulators in the mammalian central nervous system (CNS). In this context, ARHGAP22 protein has been previously shown to specifically inhibit RAC1 activity thus standing as critical cytoskeleton regulator in cancer cell models; however, whether this function is maintained in neurons in the CNS is unknown. Here, we generated a knockout animal model for arhgap22 and provided evidence of its role in the hippocampus. Specifically, we found that ARHGAP22 absence leads to RAC1 hyperactivity and to an increase in dendritic spine density with defects in synaptic structure, molecular composition, and plasticity. Furthermore, arhgap22 silencing causes impairment in cognition and a reduction in anxiety-like behavior in mice. We also found that inhibiting RAC1 restored synaptic plasticity in ARHGAP22 KO mice. All together, these results shed light on the specific role of ARHGAP22 in hippocampal excitatory synapse formation and function as well as in learning and memory behaviors.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Janine JG Arts ◽  
Eike K Mahlandt ◽  
Max Grönloh ◽  
Lilian Schimmel ◽  
Ivar Noordstra ◽  
...  

Upon inflammation, leukocytes rapidly transmigrate across the endothelium to enter the inflamed tissue. Evidence accumulates that leukocytes use preferred exit sites, though it is not yet clear how these hotspots in the endothelium are defined and how they are recognized by the leukocyte. Using lattice light sheet microscopy, we discovered that leukocytes prefer endothelial membrane protrusions at cell junctions for transmigration. Phenotypically, these junctional membrane protrusions are present in an asymmetric manner, meaning that one endothelial cell shows the protrusion and the adjacent one does not. Consequently, leukocytes cross the junction by migrating underneath the protruding endothelial cell. These protrusions depend on Rac1 activity and by using a photo-activatable Rac1 probe, we could artificially generate local exit-sites for leukocytes. Overall, we have discovered a new mechanism that uses local induced junctional membrane protrusions to facilitate/steer the leukocyte escape/exit from inflamed vessel walls.


Oncogene ◽  
2021 ◽  
Author(s):  
Jun Sun ◽  
Gabriel Gaidosh ◽  
Ye Xu ◽  
Adnan Mookhtiar ◽  
Na Man ◽  
...  

AbstractThe activity of Rho family GTPase protein, RAC1, which plays important normal physiological functions, is dysregulated in multiple cancers. RAC1 is expressed in both estrogen receptor alpha (ER)-positive and ER-negative breast cancer (BC) cells. However, ER-positive BC is more sensitive to RAC1 inhibition. We have determined that reducing RAC1 activity, using siRNA or EHT 1864 (a small molecule Rac inhibitor), leads to rapid ER protein degradation. RAC1 interacts with ER within the ER complex and RAC1 localizes to chromatin binding sites for ER upon estrogen treatment. RAC1 activity is important for RNA Pol II function at both promoters and enhancers of ER target genes and ER-regulated gene transcription is blocked by EHT 1864, in a dose-dependent manner. Having identified that RAC1 is an essential ER cofactor for ER protein stability and ER transcriptional activity, we report that RAC1 inhibition could be an effective therapeutic approach for ER-positive BC.


2021 ◽  
Author(s):  
Angélica Martínez-López ◽  
Ana García-Casas ◽  
Paloma Bragado ◽  
Akira Orimo ◽  
Eduardo Castañeda-Saucedo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document