Should We Embrace Mechanical Power to Understand the Risk of Ventilator-Induced Lung Injury in Children?*

2022 ◽  
Vol 23 (1) ◽  
pp. 71-74
Author(s):  
Robinder G. Khemani
2018 ◽  
Vol 6 (19) ◽  
pp. 394-394 ◽  
Author(s):  
Robert Huhle ◽  
Ary Serpa Neto ◽  
Marcus J. Schultz ◽  
Marcelo Gama de Abreu

2019 ◽  
Vol 127 (1) ◽  
pp. 58-70 ◽  
Author(s):  
Michelle M. Mellenthin ◽  
Siyeon A. Seong ◽  
Gregory S. Roy ◽  
Elizabeth Bartolák-Suki ◽  
Katharine L. Hamlington ◽  
...  

Identifying safe ventilation patterns for patients with acute respiratory distress syndrome remains challenging because of the delicate balance between gas exchange and selection of ventilator settings to prevent further ventilator-induced lung injury (VILI). Accordingly, this work seeks to link ventilator settings to graded levels of VILI to identify injury cost functions that predict injury by using a computational model to process pressures and flows measured at the airway opening. Pressure-volume loops were acquired over the course of ~2 h of mechanical ventilation in four different groups of BALB/c mice. A cohort of these animals were subjected to an injurious bronchoalveolar lavage before ventilation. The data were analyzed with a single-compartment model that predicts recruitment/derecruitment and tissue distension at each time step in measured pressure-volume loops. We compared several injury cost functions to markers of VILI-induced blood-gas barrier disruption. Of the cost functions considered, we conclude that mechanical power dissipation and strain heterogeneity are the best at distinguishing between graded levels of injury and are good candidates for forecasting the development of VILI. NEW & NOTEWORTHY This work uses a predictive single-compartment model and injury cost functions to assess graded levels of mechanical ventilator-induced lung injury. The most promising measures include strain heterogeneity and mechanical power dissipation.


2016 ◽  
Vol 124 (5) ◽  
pp. 1100-1108 ◽  
Author(s):  
Massimo Cressoni ◽  
Miriam Gotti ◽  
Chiara Chiurazzi ◽  
Dario Massari ◽  
Ilaria Algieri ◽  
...  

Abstract Background The ventilator works mechanically on the lung parenchyma. The authors set out to obtain the proof of concept that ventilator-induced lung injury (VILI) depends on the mechanical power applied to the lung. Methods Mechanical power was defined as the function of transpulmonary pressure, tidal volume (TV), and respiratory rate. Three piglets were ventilated with a mechanical power known to be lethal (TV, 38 ml/kg; plateau pressure, 27 cm H2O; and respiratory rate, 15 breaths/min). Other groups (three piglets each) were ventilated with the same TV per kilogram and transpulmonary pressure but at the respiratory rates of 12, 9, 6, and 3 breaths/min. The authors identified a mechanical power threshold for VILI and did nine additional experiments at the respiratory rate of 35 breaths/min and mechanical power below (TV 11 ml/kg) and above (TV 22 ml/kg) the threshold. Results In the 15 experiments to detect the threshold for VILI, up to a mechanical power of approximately 12 J/min (respiratory rate, 9 breaths/min), the computed tomography scans showed mostly isolated densities, whereas at the mechanical power above approximately 12 J/min, all piglets developed whole-lung edema. In the nine confirmatory experiments, the five piglets ventilated above the power threshold developed VILI, but the four piglets ventilated below did not. By grouping all 24 piglets, the authors found a significant relationship between the mechanical power applied to the lung and the increase in lung weight (r2 = 0.41, P = 0.001) and lung elastance (r2 = 0.33, P < 0.01) and decrease in Pao2/Fio2 (r2 = 0.40, P < 0.001) at the end of the study. Conclusion In piglets, VILI develops if a mechanical power threshold is exceeded.


2016 ◽  
Vol 125 (5) ◽  
pp. 1070-1071 ◽  
Author(s):  
Cynthia S. Samary ◽  
Pedro L. Silva ◽  
Marcelo Gama de Abreu ◽  
Paolo Pelosi ◽  
Patricia R. M. Rocco

2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Yongpeng Xie ◽  
Hui Zheng ◽  
Zhifang Mou ◽  
Yanli Wang ◽  
Xiaomin Li

Background. The energy delivered by a ventilator to the respiratory system in one minute is defined as mechanical power (MP). However, the effect of ventilator-induced lung injury (VILI) in patients suffering from acute respiratory distress syndrome (ARDS) is still unknown. Our previous studies revealed that CXCL10 may be a potential biomarker of lung injury in ARDS. Therefore, the aim of this study was to compare the lung injury of rats and patients under different MP conditions to explore the involvement of CXCL10 and its receptor CXCR3 in VILI. Methods. Patients were divided into the high mechanical power group (HMPp group) and low mechanical power group (LMPp group), while rats were assigned to the high mechanical power group (HMPr group), medium mechanical power group (MMPr group), and low mechanical power group (LMPr group). CXCL10 and CXCR3 plasma content in ARDS patients and rats under ventilation at different MP was measured, as well as their protein and mRNA expression in rat lungs. Results. CXCL10 and CXCR3 content in the plasma of ARDS patients in the HMPp was significantly higher than that in the LMPp. The increase of MP during mechanical ventilation in the rats gradually increased lung damage, and CXCL10 and CXCR3 levels in rat plasma gradually increased with the increase of MP. CXCL10 and CXCR3 protein and mRNA expression in the HMPr group and MMPr group was significantly higher than that in the LMPr group ( P < 0.05 ). More mast cells were present in the trachea, bronchus, blood vessels, and lymphatic system in the rat lungs of the HMPr group, and the number of mast cells in the HMPr group ( 13.32 ± 3.27 ) was significantly higher than that in the LMPr group ( 3.25 ± 0.29 ) ( P < 0.05 ). Conclusion. The higher the MP, the more severe the lung injury, and the higher the CXCL10/CXCR3 expression. Therefore, CXCL10/CXCR3 might participate in VILI by mediating mast cell chemotaxis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Simone Gattarello ◽  
Iacopo Pasticci ◽  
Mattia Busana ◽  
Stefano Lazzari ◽  
Paola Palermo ◽  
...  

Background: Ventilator-induced lung injury (VILI) via respiratory mechanics is deeply interwoven with hemodynamic, kidney and fluid/electrolyte changes. We aimed to assess the role of positive fluid balance in the framework of ventilation-induced lung injury.Methods:Post-hoc analysis of seventy-eight pigs invasively ventilated for 48 h with mechanical power ranging from 18 to 137 J/min and divided into two groups: high vs. low pleural pressure (10.0 ± 2.8 vs. 4.4 ± 1.5 cmH2O; p &lt; 0.01). Respiratory mechanics, hemodynamics, fluid, sodium and osmotic balances, were assessed at 0, 6, 12, 24, 48 h. Sodium distribution between intracellular, extracellular and non-osmotic sodium storage compartments was estimated assuming osmotic equilibrium. Lung weight, wet-to-dry ratios of lung, kidney, liver, bowel and muscle were measured at the end of the experiment.Results: High pleural pressure group had significant higher cardiac output (2.96 ± 0.92 vs. 3.41 ± 1.68 L/min; p &lt; 0.01), use of norepinephrine/epinephrine (1.76 ± 3.31 vs. 5.79 ± 9.69 mcg/kg; p &lt; 0.01) and total fluid infusions (3.06 ± 2.32 vs. 4.04 ± 3.04 L; p &lt; 0.01). This hemodynamic status was associated with significantly increased sodium and fluid retention (at 48 h, respectively, 601.3 ± 334.7 vs. 1073.2 ± 525.9 mmol, p &lt; 0.01; and 2.99 ± 2.54 vs. 6.66 ± 3.87 L, p &lt; 0.01). Ten percent of the infused sodium was stored in an osmotically inactive compartment. Increasing fluid and sodium retention was positively associated with lung-weight (R2 = 0.43, p &lt; 0.01; R2 = 0.48, p &lt; 0.01) and with wet-to-dry ratio of the lungs (R2 = 0.14, p &lt; 0.01; R2 = 0.18, p &lt; 0.01) and kidneys (R2 = 0.11, p = 0.02; R2 = 0.12, p = 0.01).Conclusion: Increased mechanical power and pleural pressures dictated an increase in hemodynamic support resulting in proportionally increased sodium and fluid retention and pulmonary edema.


2018 ◽  
Vol 9 ◽  
Author(s):  
Lillian Moraes ◽  
Pedro L. Silva ◽  
Alessandra Thompson ◽  
Cintia L. Santos ◽  
Raquel S. Santos ◽  
...  

2018 ◽  
Vol 128 (6) ◽  
pp. 1193-1206 ◽  
Author(s):  
Raquel S. Santos ◽  
Ligia de A. Maia ◽  
Milena V. Oliveira ◽  
Cíntia L. Santos ◽  
Lillian Moraes ◽  
...  

Abstract Background The authors hypothesized that low tidal volume (VT) would minimize ventilator-induced lung injury regardless of the degree of mechanical power. The authors investigated the impact of power, obtained by different combinations of VT and respiratory rate (RR), on ventilator-induced lung injury in experimental mild acute respiratory distress syndrome (ARDS). Methods Forty Wistar rats received Escherichia coli lipopolysaccharide intratracheally. After 24 h, 32 rats were randomly assigned to be mechanically ventilated (2 h) with a combination of different VT (6 ml/kg and 11 ml/kg) and RR that resulted in low and high power. Power was calculated as energy (ΔP,L2/E,L) × RR (ΔP,L = transpulmonary driving pressure; E,L = lung elastance), and was threefold higher in high than in low power groups. Eight rats were not mechanically ventilated and used for molecular biology analysis. Results Diffuse alveolar damage score, which represents the severity of edema, atelectasis, and overdistension, was increased in high VT compared to low VT, in both low (low VT: 11 [9 to 14], high VT: 18 [15 to 20]) and high (low VT: 19 [16 to 25], high VT: 29 [27 to 30]) power groups. At high VT, interleukin-6 and amphiregulin expressions were higher in high-power than in low-power groups. At high power, amphiregulin and club cell protein 16 expressions were higher in high VT than in low VT. Mechanical energy and power correlated well with diffuse alveolar damage score and interleukin-6, amphiregulin, and club cell protein 16 expression. Conclusions In experimental mild ARDS, even at low VT, high mechanical power promoted ventilator-induced lung injury. To minimize ventilator-induced lung injury, low VT should be combined with low power.


2018 ◽  
Vol 6 (19) ◽  
pp. 395-395 ◽  
Author(s):  
Francesco Vasques ◽  
Eleonora Duscio ◽  
Iacopo Pasticci ◽  
Federica Romitti ◽  
Francesco Vassalli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document