Comparison of Radiation Dose and Image Quality Between Split-Filter Twin Beam Dual-Energy Images and Single-Energy Images in Single-Source Contrast-Enhanced Chest Computed Tomography

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Li-Na Zhou ◽  
Shi-Jun Zhao ◽  
Ruo-Bing Wang ◽  
Ya-Wen Wang ◽  
Shou-Xin Yang ◽  
...  
2018 ◽  
Vol 52 ◽  
pp. 107-108
Author(s):  
Luca Bellesi ◽  
Gianluca Argentieri ◽  
Filippo Del Grande ◽  
Stefano Presilla ◽  
Corrado Soldati ◽  
...  

2018 ◽  
Vol 51 (6) ◽  
pp. 377-384 ◽  
Author(s):  
Rodrigo Canellas ◽  
Subba Digumarthy ◽  
Azadeh Tabari ◽  
Alexi Otrakji ◽  
Shaunagh McDermott ◽  
...  

Abstract Objective: To determine whether dual-energy computed tomography (DECT) of the chest can be performed at a reduced radiation dose, with an emphasis on images generated with post-processing techniques. Materials and Methods: In 21 patients undergoing DECT of the chest in a dual-source scanner, an additional image series was acquired at a reduced radiation dose. Four thoracic radiologists assessed both image series for image quality, normal thoracic structures, as well as pulmonary and mediastinal abnormalities, on virtual monochromatic images at 40 keV and 60 keV. Data were analyzed with Student's t-test, kappa statistics, analysis of variance, and the Wilcoxon signed-rank test. Results: The overall image quality of 60 keV virtual monochromatic images at a reduced radiation dose was considered optimal in all patients, and no abnormalities were missed. Contrast enhancement and lesion detection performance were comparable between reduced-dose images at 40 keV and standard-of-care images at 60 keV. The intraobserver and interobserver agreement were both good. The mean volumetric CT dose index (CTDIvol), size-specific dose estimate (SSDE), dose-length product (DLP), and effective dose (ED) for reduced-dose DECT were 3.0 ± 0.6 mGy, 4.0 ± 0.6 mGy, 107 ± 30 mGy.cm, and 1.5 ± 0.4 mSv, respectively. Conclusion: DECT of the chest can be performed at a reduced radiation dose (CTDIvol < 3 mGy) without loss of diagnostic information.


2017 ◽  
Vol 52 (3) ◽  
pp. 155-162 ◽  
Author(s):  
Meike Weis ◽  
Thomas Henzler ◽  
John W. Nance ◽  
Holger Haubenreisser ◽  
Mathias Meyer ◽  
...  

2018 ◽  
Vol 45 (2) ◽  
pp. 136-141 ◽  
Author(s):  
Luca Saba ◽  
Michele di Martino ◽  
Paolo Siotto ◽  
Michele Anzidei ◽  
Giovanni Maria Argiolas ◽  
...  

Author(s):  
Bernhard Petritsch ◽  
Aleksander Kosmala ◽  
Tobias Gassenmaier ◽  
Andreas Weng ◽  
Simon Veldhoen ◽  
...  

Purpose To compare radiation dose, subjective and objective image quality of 3 rd generation dual-source CT (DSCT) and dual-energy CT (DECT) with conventional 64-slice single-source CT (SSCT) for pulmonary CTA. Materials and Methods 180 pulmonary CTA studies were performed in three patient cohorts of 60 patients each. Group 1: conventional SSCT 120 kV (ref.); group 2: single-energy DSCT 100 kV (ref.); group 3: DECT 90/Sn150 kV. CTDIvol, DLP, effective radiation dose were reported, and CT attenuation (HU) was measured on three central and peripheral levels. The signal-to-noise-ratio (SNR) and contrast-to-noise-ratio (CNR) were calculated. Two readers assessed subjective image quality according to a five-point scale. Results Mean CTDIvol and DLP were significantly lower in the dual-energy group compared to the SSCT group (p < 0.001 [CTDIvol]; p < 0.001 [DLP]) and the DSCT group (p = 0.003 [CTDIvol]; p = 0.003 [DLP]), respectively. The effective dose in the DECT group was 2.79 ± 0.95 mSv and significantly smaller than in the SSCT group (4.60 ± 1.68 mSv, p < 0.001) and the DSCT group (4.24 ± 2.69 mSv, p = 0.003). The SNR and CNR were significantly higher in the DSCT group (p < 0.001). Subjective image quality did not differ significantly among the three protocols and was rated good to excellent in 75 % (135/180) of cases with an inter-observer agreement of 80 %. Conclusion Dual-energy pulmonary CTA protocols of 3 rd generation dual-source scanners allow for significant reduction of radiation dose while providing excellent image quality and potential additional information by means of perfusion maps. Key Points: Citation Format


Sign in / Sign up

Export Citation Format

Share Document