Collagen-Elastin and Collagen-Glycosaminoglycan Scaffolds Promote Distinct Patterns of Matrix Maturation and Axial Vascularization in Arteriovenous Loop–Based Soft Tissue Flaps

2017 ◽  
Vol 79 (1) ◽  
pp. 92-100 ◽  
Author(s):  
Volker J. Schmidt ◽  
Johanna O. Wietbrock ◽  
Nico Leibig ◽  
Torsten Gloe ◽  
Dominic Henn ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Junjun Fan ◽  
Long Bi ◽  
Dan Jin ◽  
Kuanhai Wei ◽  
Bin Chen ◽  
...  

The lack of vascularization in the tissue engineered bone results in poor survival and ossification. Tissue engineered bone can be wrapped in the soft tissue flaps which are rich in blood supply to complete the vascularization in vivo by microsurgical technique, and the surface of the bone graft can be invaded with new vascular network. The intrinsic vascularization can be induced via a blood vessel or an arteriovenous loop located centrally in the bone graft by microsurgical technique. The peripheral nerve especially peptidergic nerve has effect on the bone regeneration. The peptidergic nerve can be used to construct the neurotized tissue engineered bone by implanting the nerve fiber into the center of bone graft. Thus, constructing a highly vascularized and neurotized tissue engineered bone according with the theory of biomimetics has become a useful method for repairing the large bone defect. Many researchers have used the microsurgical techniques to enhance the vascularization and neurotization of tissue engineered bone and to get a better osteogenesis effect. This review aims to summarize the microsurgical techniques mostly used to construct the vascularized and neurotized tissue engineered bone.


2019 ◽  
Vol 11 (490) ◽  
pp. eaau6210 ◽  
Author(s):  
Xiaowei Li ◽  
Brian Cho ◽  
Russell Martin ◽  
Michelle Seu ◽  
Chi Zhang ◽  
...  

Soft tissue losses from tumor removal, trauma, aging, and congenital malformation affect millions of people each year. Existing options for soft tissue restoration have several drawbacks: Surgical options such as the use of autologous tissue flaps lead to donor site defects, prosthetic implants are prone to foreign body response leading to fibrosis, and fat grafting and dermal fillers are limited to small-volume defects and only provide transient volume restoration. In addition, large-volume fat grafting and other tissue-engineering attempts are hampered by poor vascular ingrowth. Currently, there are no off-the-shelf materials that can fill the volume lost in soft tissue defects while promoting early angiogenesis. Here, we report a nanofiber-hydrogel composite that addresses these issues. By incorporating interfacial bonding between electrospun poly(ε-caprolactone) fibers and a hyaluronic acid hydrogel network, we generated a composite that mimics the microarchitecture and mechanical properties of soft tissue extracellular matrix. Upon subcutaneous injection in a rat model, this composite permitted infiltration of host macrophages and conditioned them into the pro-regenerative phenotype. By secreting pro-angiogenic cytokines and growth factors, these polarized macrophages enabled gradual remodeling and replacement of the composite with vascularized soft tissue. Such host cell infiltration and angiogenesis were also observed in a rabbit model for repairing a soft tissue defect filled with the composite. This injectable nanofiber-hydrogel composite augments native tissue regenerative responses, thus enabling durable soft tissue restoration outcomes.


2003 ◽  
Vol 61 (3) ◽  
pp. 292-297 ◽  
Author(s):  
Stefan Schultze-Mosgau ◽  
Joerg Wiltfang ◽  
Frank Birklein ◽  
Friedrich Wilhelm Neukam

2018 ◽  
Author(s):  
Jonathan S. Friedstat ◽  
Michelle R Coriddi ◽  
Eric G Halvorson ◽  
Joseph J Disa

Wound management and soft-tissue repair can vary depending on the location. The head and neck, chest and back, arm and forearm, hand, abdomen, gluteal area and perineum, thigh, knee, lower leg, and foot all have different local options and preferred free flaps to use for reconstruction. Secondary reconstruction requires a detailed analysis of all aspects of the wound including any scars, soft tissue and/or skin deficits, functional defects, contour defects, complex or composite defects, and/or unstable previous wound coverage. Careful monitoring of both the patient and reconstruction is necessary in the postoperative period to ensure long-term success.   This review contains 2 figures and 17 references. Key Words: free tissue transfer, pedicle flaps, soft-tissue coverage, wound closure, wound healing, wound management, wound reconstruction, tissue flaps


2018 ◽  
Author(s):  
Jonathan S. Friedstat ◽  
Michelle R Coriddi ◽  
Eric G Halvorson ◽  
Joseph J Disa

Wound management and soft-tissue repair can vary depending on the location. The head and neck, chest and back, arm and forearm, hand, abdomen, gluteal area and perineum, thigh, knee, lower leg, and foot all have different local options and preferred free flaps to use for reconstruction. Secondary reconstruction requires a detailed analysis of all aspects of the wound including any scars, soft tissue and/or skin deficits, functional defects, contour defects, complex or composite defects, and/or unstable previous wound coverage. Careful monitoring of both the patient and reconstruction is necessary in the postoperative period to ensure long-term success.   This review contains 2 figures and 17 references. Key Words: free tissue transfer, pedicle flaps, soft-tissue coverage, wound closure, wound healing, wound management, wound reconstruction, tissue flaps


2007 ◽  
pp. 284-291
Author(s):  
Mark K. Ferguson
Keyword(s):  

2017 ◽  
Vol 11 (1) ◽  
pp. 704-713
Author(s):  
Xiaohua Pan ◽  
Guangyao Wang ◽  
Tun Hing Lui

This article reported the ultilization of cross-bridge flap transplantation and combined free-tissue flap transplantation to treat a 54-year-old male with Gustilo type III-C injuries. Thorough debridement, external fixation and vacuum sealing drainage were performed in the fist-stage treatment. After the removal of negative pressure on VSD devices, the joined free-tissue flaps and the cross-bridge flap were performed to repair the extensive soft-tissue defects. One month later the pedicle of cross-bridge flap was divided and the external fixator connecting both the lower legs was removed. In 3-month follow-up, the extensive defects was completely covered by a nearly normal skin and radiograph showed tibia and talus healing.


Sign in / Sign up

Export Citation Format

Share Document