soft tissue repair
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 29)

H-INDEX

24
(FIVE YEARS 2)

2022 ◽  
Vol 8 ◽  
Author(s):  
Mirit Sharabi

Through years of evolution, biological soft fibrous tissues have developed remarkable functional properties, unique hierarchical architectures, and -most notably, an unparalleled and extremely efficient deformation ability. Whereas the structure-function relationship is well-studied in natural hard materials, soft materials are not getting similar attention, despite their high prevalence in nature. These soft materials are usually constructed as fiber-reinforced composites consisting of diverse structural motifs that result in an overall unique mechanical behavior with large deformations. Biomimetics of their mechanical behavior is currently a significant bioengineering challenge. The unique properties of soft fibrous tissues stem from their structural complexity, which, unfortunately, also hinders our ability to generate adequate synthetic analogs, such that autografts remain the “gold standard” materials for soft-tissue repair and replacement. This review seeks to understand the structural and deformation mechanisms of soft collagenous tissues, with a particular emphasis on tendon and ligaments, the annulus fibrosus (AF) in the intervertebral disc (IVD), skin, and blood vessels. We examined and compared different mechanical and structural motifs in these different tissue types, which are subjected to complex and varied mechanical loads, to isolate the mechanisms of their deformation behavior. Herein, we focused on their composite structure from a perspective of the different building blocks, architecture, crimping patterns, fiber orientation, organization and their structure-function relationship. In the second part of the review, we presented engineered soft composite applications that used these structural motifs to mimic the structural and mechanical behavior of soft fibrous tissues. Moreover, we demonstrated new methodologies and materials that use biomimetic principles as a guide. These novel architectural materials have tailor-designed J-shaped large deformations behavior. Structural motifs in soft composites hold valuable insights that could be exploited to generate the next generation of materials. They actually have a two-fold effect: 1) to get a better understanding of the complex structure-function relationship in a simple material system using reverse biomimetics and 2) to develop new and efficient materials. These materials could revolutionize the future tailor-designed soft composite materials together with various soft-tissue repair and replacement applications that will be mechanically biocompatible with the full range of native tissue behaviors.


2021 ◽  
pp. 193864002110676
Author(s):  
Michael J. Kelly ◽  
Daniel M. Dean ◽  
Syed H. Hussaini ◽  
Steven K. Neufeld ◽  
Daniel J. Cuttica

Background Augmentation of soft tissue repairs has been helpful in protecting surgically repaired tissues as they heal. FlexBand (Artelon, Marietta, Georgia) is a synthetic, degradable, polycaprolactone-based polyurethane urea (PUUR) matrix that has been investigated and used for soft tissue repair in a variety of settings. The purpose of this study was to evaluate the safety profile of a PUUR matrix in a large cohort of patients undergoing soft tissue repairs about the foot and ankle. Methods A retrospective chart review of consecutive patients who underwent surgery using FlexBand to augment a soft tissue repair was performed to evaluate for major and minor complications related to the PUUR matrix. Results. A total of 105 patients with an average >6 months follow-up were included. The most common procedures were spring ligament repair, Achilles tendon repair, and Brostrom. There were 12 complications. Four major complications occurred with only 1 requiring PUUR matrix removal. Patients with wound complications had a higher body mass index (BMI) and rate of smoking. Conclusion Complication rates involving PUUR matrix in soft tissue foot and ankle reconstruction procedures are low and comparable with historical complication rates. The PUUR matrix is safe for use in a variety of soft tissue procedures about the foot and ankle. Level of Evidence: Level 4, Retrospective case-series


2021 ◽  
pp. 088532822110457
Author(s):  
Matthew J Smith ◽  
Sandi G Dempsey ◽  
Robert W Veale ◽  
Claudia G Duston-Fursman ◽  
Chloe A F Rayner ◽  
...  

Decellularized extracellular matrix (dECM)–based biomaterials are of great clinical utility in soft tissue repair applications due to their regenerative properties. Multi-layered dECM devices have been developed for clinical indications where additional thickness and biomechanical performance are required. However, traditional approaches to the fabrication of multi-layered dECM devices introduce additional laminating materials or chemical modifications of the dECM that may impair the biological functionality of the material. Using an established dECM biomaterial, ovine forestomach matrix, a novel method for the fabrication of multi-layered dECM constructs has been developed, where layers are bonded via a physical interlocking process without the need for additional bonding materials or detrimental chemical modification of the dECM. The versatility of the interlocking process has been demonstrated by incorporating a layer of hyaluronic acid to create a composite material with additional biological functionality. Interlocked composite devices including hyaluronic acid showed improved in vitro bioactivity and moisture retention properties.


2021 ◽  
pp. 127-144
Author(s):  
Surendra Tripathy ◽  
Dilip Kumar Patel ◽  
Roohi Kesharwani ◽  
Vikas Kumar

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3858
Author(s):  
Katarzyna Gębczak ◽  
Benita Wiatrak ◽  
Wojciech Fortuna

The use of extracellular matrix (ECM) biomaterials for soft tissue repair has proved extremely successful in animal models and in some clinical settings. The aim of the study was to investigate the effect of the commercially obtained CorMatrix bioscaffold on the viability, proliferation and migration of rat pheochromocytoma cell line PC12. PC12 cells were plated directly onto a CorMatrix flake or the well surface of a 12-well plate and cultured in RPMI-1640 medium and a medium supplemented with the nerve growth factor (NGF). The surface of the culture plates was modified with collagen type I (Col I). The number of PC12 cells was counted at four time points and then analysed for apoptosis using a staining kit containing annexin V conjugate with fluorescein and propidium iodide (PI). The effect of CorMatrix bioscaffold on the proliferation and migration of PC12 cells was tested by staining the cells with Hoechst 33258 solution for analysis using fluorescence microscopy. The research showed that the percentage of apoptotic and necrotic cells was low (less than 7%). CorMatrix stimulates the proliferation and possibly migration of PC12 cells that populate all levels of the three-dimensional architecture of the biomaterial. Further research on the mechanical and biochemical capabilities of CorMatrix offers prospects for the use of this material in neuro-regenerative applications.


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Hongqing Chen ◽  
Fei Fei ◽  
Xinda Li ◽  
Zhenguo Nie ◽  
Dezhi Zhou ◽  
...  

Abstract Both of the long-term fidelity and cell viability of three-dimensional (3D)-bioprinted constructs are essential to precise soft tissue repair. However, the shrinking/swelling behavior of hydrogels brings about inadequate long-term fidelity of constructs, and bioinks containing excessive polymer are detrimental to cell viability. Here, we obtained a facile hydrogel by introducing 1% aldehyde hyaluronic acid (AHA) and 0.375% N-carboxymethyl chitosan (CMC), two polysaccharides with strong water absorption and water retention capacity, into classic gelatin (GEL, 5%)–alginate (ALG, 1%) ink. This GEL–ALG/CMC/AHA bioink possesses weak temperature dependence due to the Schiff base linkage of CMC/AHA and electrostatic interaction of CMC/ALG. We fabricated integrated constructs through traditional printing at room temperature and in vivo simulation printing at 37°C. The printed cell-laden constructs can maintain subaqueous fidelity for 30 days after being reinforced by 3% calcium chloride for only 20 s. Flow cytometry results showed that the cell viability was 91.38 ± 1.55% on day 29, and the cells in the proliferation plateau at this time still maintained their dynamic renewal with a DNA replication rate of 6.06 ± 1.24%. This work provides a convenient and practical bioink option for 3D bioprinting in precise soft tissue repair.


Sign in / Sign up

Export Citation Format

Share Document