foreign body response
Recently Published Documents


TOTAL DOCUMENTS

240
(FIVE YEARS 106)

H-INDEX

36
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Jagannath Padmanabhan ◽  
Kellen Chen ◽  
Dharshan Sivaraj ◽  
Britta A Kuehlmann ◽  
Clark A Bonham ◽  
...  

For decades, it has been assumed that the foreign body response (FBR) to biomedical implants is primarily a reaction to the chemical and mechanical properties of the implant. Here, we show for the first time that a third independent variable, allometric tissue-scale forces (which increase exponentially with body size), can drive the biology of FBR in humans. We first demonstrate that pathological FBR in humans is mediated by immune cell-specific Rac2 mechanotransduction signaling, independent of implant chemistry or mechanical properties. We then show that mice, which are typically poor models of human FBR, can be made to induce a strikingly human-like pathological FBR by altering these extrinsic tissue forces. Altering these extrinsic tissue forces alone activates Rac2 signaling in a unique subpopulation of immune cells and results in a human-like pathological FBR at the molecular, cellular, and local tissue levels. Finally, we demonstrate that blocking Rac2 signaling negates the effect of increased tissue forces, dramatically reducing FBR. These findings highlight a previously unsuspected mechanism for pathological FBR and may have profound implications for the design and safety of all implantable devices in humans.


2022 ◽  
Author(s):  
Daniel Abebayehu ◽  
Blaise N. Pfaff ◽  
Grace C. Bingham ◽  
Surabhi Ghatti ◽  
Andrew Miller ◽  
...  

Microporous annealed particle (MAP) hydrogels are an exciting new development in biomaterial design. They regulate innate and acquired immunity which has been linked to their ability to evade normal host-material fibrosis. Yet, resident stromal fibroblasts, not immune cells, are the arbiters of the extracellular matrix assembly that characterizes fibrosis. In other idiopathic fibrotic disorders, a fibroblast subpopulation defined by its loss of cell surface Thy-1 expression is strongly correlated with degree of fibrosis. We have previously shown that Thy-1 is a critical αvβ3 integrin regulator that enables normal fibroblast mechanosensing and here, leveraging non-fibrosing MAP gels, we demonstrate that Thy-1-/- mice mount a robust response to MAP gels that remarkably resembles a classical foreign body response. We further find that within the naive, Thy-1+ fibroblast population exists a distinct and cryptic αSMA+ Thy-1- population that emerges in response to IL-1β and TNFα. Employing single-cell RNA sequencing, we find that IL-1β/TNFα-induced Thy-1- fibroblasts actually consist of two distinct subpopulations, both of which are strongly pro-inflammatory. These findings illustrate the emergence of a unique pro-inflammatory, pro-fibrotic fibroblast subpopulation that is central to material-associated fibrosis likely through amplifying local inflammatory signaling.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Shannen K. Sharpe ◽  
Michelle M. Martinez ◽  
Kenneth W. Dunn

The foreign body response is the body’s response to the insertion of an object. The foreign body response consists of two components, the innate and adaptive immune response, and lasts for the life of the inserted object.  Accordingly, the foreign body response represents a significant challenge to the development of implanted medical devices.  In addition to triggering the damaging consequences of inflammation, the foreign body response acts to encapsulate and isolate inserted objects, limiting the functional lifetime of medical devices such as glucose monitors.  Accordingly, significant efforts have been devoted to understanding the cell biology of the foreign body response to identify approaches for limiting surface “biofouling”.  We have developed an indwelling window system that support longitudinal intravital microscopy of mice.  In studies of transgenic mice expressing fluorescent immune cells, we found that the window triggers a local inflammatory response.  To explore the utility of this window system as an experimental platform for characterizing the foreign body response, we conducted an intravital microscopy study of 8 mice expressing GFP in myeloid immune cells (Lys-EGFP mice) with surgically implanted abdominal imaging windows.  To identify differences in the responses to different surface chemistries, the windows were either left uncoated or coated with poly-L-lysine or type V mouse collagen prior to insertion. Intravital multiphoton microscopy studies conducted over a period of up to 3 weeks demonstrated that the window instigated a local recruitment of immune cells, followed by vascularization and giant cell formation that varied depending upon window surface treatment.  These studies demonstrate the utility of the abdominal window as a model system for studying the cell biology of the foreign body response and represent the template for subsequent studies designed to compare the foreign body response to different coating materials designed to extend the useful lifetime of implanted devices.


2021 ◽  
Author(s):  
Quentin A. Whitsitt ◽  
Bella Patel ◽  
Brad Hunt ◽  
Erin K. Purcell

AbstractThe study of the foreign body reaction to implanted electrodes in the brain is an important area of research for the future development of neuroprostheses and experimental electrophysiology. After electrode implantation in the brain, microglial activation, reactive astrogliosis, and neuronal cell death create an environment immediately surrounding the electrode that is significantly altered from its homeostatic state. To uncover physiological changes potentially affecting device function and longevity, spatial transcriptomics was implemented in this preliminary study to identify changes in gene expression driven by electrode implantation. This RNA-sequencing technique (10x Genomics, Visium) uses spatially coded, RNA-binding oligonucleotides on a microscope slide to spatially identify each sequencing read. For these experiments, sections of rat motor cortex implanted with Michigan-style silicon electrodes were mounted on the Visium slide for processing. Each tissue section was labeled for neurons and astrocytes using immunohistochemistry to provide a spatial reference for mapping each sequencing read relative to the device tract. Results from rat motor cortex at 24 hours, 1 week, and 6 weeks post implantation showed up to 5811 differentially expressed genes between implanted and non-implanted tissue sections. Many of these genes are related to biological mechanisms previously reported in studies of the foreign body response to implanted electrodes, while others are novel to this study. These results will provide a foundation for future work to both improve and measure the effects of gene expression on the long-term stability of recordings from implanted electrodes in the brain. Ongoing work will expand on these initial observations as we gain a better understanding of the dynamic, molecular changes taking place in the brain in response to electrode implantation.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2077
Author(s):  
Ruth E. Levey ◽  
Fergal B. Coulter ◽  
Karina C. Scheiner ◽  
Stefano Deotti ◽  
Scott T. Robinson ◽  
...  

Macroencapsulation systems have been developed to improve islet cell transplantation but can induce a foreign body response (FBR). The development of neovascularization adjacent to the device is vital for the survival of encapsulated islets and is a limitation for long-term device success. Previously we developed additive manufactured multi-scale porosity implants, which demonstrated a 2.5-fold increase in tissue vascularity and integration surrounding the implant when compared to a non-textured implant. In parallel to this, we have developed poly(ε-caprolactone-PEG-ε-caprolactone)-b-poly(L-lactide) multiblock copolymer microspheres containing VEGF, which exhibited continued release of bioactive VEGF for 4-weeks in vitro. In the present study, we describe the next step towards clinical implementation of an islet macroencapsulation device by combining a multi-scale porosity device with VEGF releasing microspheres in a rodent model to assess prevascularization over a 4-week period. An in vivo estimation of vascular volume showed a significant increase in vascularity (* p = 0.0132) surrounding the +VEGF vs. −VEGF devices, however, histological assessment of blood vessels per area revealed no significant difference. Further histological analysis revealed significant increases in blood vessel stability and maturity (** p = 0.0040) and vessel diameter size (*** p = 0.0002) surrounding the +VEGF devices. We also demonstrate that the addition of VEGF microspheres did not cause a heightened FBR. In conclusion, we demonstrate that the combination of VEGF microspheres with our multi-scale porous macroencapsulation device, can encourage the formation of significantly larger, stable, and mature blood vessels without exacerbating the FBR.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7372
Author(s):  
Manuel Abels ◽  
Said Alkildani ◽  
Annica Pröhl ◽  
Xin Xiong ◽  
Rumen Krastev ◽  
...  

The physicochemical properties of synthetically produced bone substitute materials (BSM) have a major impact on biocompatibility. This affects bony tissue integration, osteoconduction, as well as the degradation pattern and the correlated inflammatory tissue responses including macrophages and multinucleated giant cells (MNGCs). Thus, influencing factors such as size, special surface morphologies, porosity, and interconnectivity have been the subject of extensive research. In the present publication, the influence of the granule size of three identically manufactured bone substitute granules based on the technology of hydroxyapatite (HA)-forming calcium phosphate cements were investigated, which includes the inflammatory response in the surrounding tissue and especially the induction of MNGCs (as a parameter of the material degradation). For the in vivo study, granules of three different size ranges (small = 0.355–0.5 mm; medium = 0.5–1 mm; big = 1–2 mm) were implanted in the subcutaneous connective tissue of 45 male BALB/c mice. At 10, 30, and 60 days post implantationem, the materials were explanted and histologically processed. The defect areas were initially examined histopathologically. Furthermore, pro- and anti-inflammatory macrophages were quantified histomorphometrically after their immunohistochemical detection. The number of MNGCs was quantified as well using a histomorphometrical approach. The results showed a granule size-dependent integration behavior. The surrounding granulation tissue has passivated in the groups of the two bigger granules at 60 days post implantationem including a fibrotic encapsulation, while a granulation tissue was still present in the group of the small granules indicating an ongoing cell-based degradation process. The histomorphometrical analysis showed that the number of proinflammatory macrophages was significantly increased in the small granules at 60 days post implantationem. Similarly, a significant increase of MNGCs was detected in this group at 30 and 60 days post implantationem. Based on these data, it can be concluded that the integration and/or degradation behavior of synthetic bone substitutes can be influenced by granule size.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7224
Author(s):  
Júlia Ribeiro Garcia Carvalho ◽  
Gabriel Conde ◽  
Marina Lansarini Antonioli ◽  
Clarissa Helena Santana ◽  
Thayssa Oliveira Littiere ◽  
...  

In horses, there is an increasing interest in developing long-lasting drug formulations, with biopolymers as viable carrier alternatives in addition to their use as scaffolds, suture threads, screws, pins, and plates for orthopedic surgeries. This communication focuses on the prolonged biocompatibility and biodegradation of PLA, prepared by hot pressing at 180 °C. Six samples were implanted subcutaneously on the lateral surface of the neck of one horse. The polymers remained implanted for 24 to 57 weeks. Physical examination, plasma fibrinogen, and the mechanical nociceptive threshold (MNT) were performed. After 24, 28, 34, 38, and 57 weeks, the materials were removed for histochemical analysis using hematoxylin-eosin and scanning electron microscopy (SEM). There were no essential clinical changes. MNT decreased after the implantation procedure, returning to normal after 48 h. A foreign body response was observed by histopathologic evaluation up to 38 weeks. At 57 weeks, no polymer or fibrotic capsules were identified. SEM showed surface roughness suggesting a biodegradation process, with an increase in the median pore diameter. As in the histopathological evaluation, it was not possible to detect the polymer 57 weeks after implantation. PLA showed biocompatible degradation and these findings may contribute to future research in the biomedical area.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1446
Author(s):  
Youjoung Kim ◽  
Evon S. Ereifej ◽  
William E. Schwartzman ◽  
Seth M. Meade ◽  
Keying Chen ◽  
...  

(1) Background: Intracortical microelectrodes (IMEs) are essential to basic brain research and clinical brain–machine interfacing applications. However, the foreign body response to IMEs results in chronic inflammation and an increase in levels of reactive oxygen and nitrogen species (ROS/RNS). The current study builds on our previous work, by testing a new delivery method of a promising antioxidant as a means of extending intracortical microelectrodes performance. While resveratrol has shown efficacy in improving tissue response, chronic delivery has proven difficult because of its low solubility in water and low bioavailability due to extensive first pass metabolism. (2) Methods: Investigation of an intraventricular delivery of resveratrol in rats was performed herein to circumvent bioavailability hurdles of resveratrol delivery to the brain. (3) Results: Intraventricular delivery of resveratrol in rats delivered resveratrol to the electrode interface. However, intraventricular delivery did not have a significant impact on electrophysiological recordings over the six-week study. Histological findings indicated that rats receiving intraventricular delivery of resveratrol had a decrease of oxidative stress, yet other biomarkers of inflammation were found to be not significantly different from control groups. However, investigation of the bioavailability of resveratrol indicated a decrease in resveratrol accumulation in the brain with time coupled with inconsistent drug elution from the cannulas. Further inspection showed that there may be tissue or cellular debris clogging the cannulas, resulting in variable elution, which may have impacted the results of the study. (4) Conclusions: These results indicate that the intraventricular delivery approach described herein needs further optimization, or may not be well suited for this application.


Sign in / Sign up

Export Citation Format

Share Document