tissue restoration
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 38)

H-INDEX

19
(FIVE YEARS 6)

2021 ◽  
Vol 9 ◽  
Author(s):  
Yuanfei Wang ◽  
Yingnan Liu ◽  
Xiaopei Zhang ◽  
Na Liu ◽  
Xixi Yu ◽  
...  

With the increase of consumption of high-sugar foods, beverages, tobacco, and alcohol, the incidence rate of oral diseases has been increasing year by year. Statistics showed that the prevalence of oral diseases such as dental caries, dental pulpal disease, and periodontal disease has reached as high as 97% in 2015 in China. It is thus urgent to develop functional materials or products for the treatment of oral diseases. Electrospinning has been a widely used technology that is capable of utilizing polymer solution to generate micro/nano fibers under an appropriate high voltage condition. Owing to their excellent structures and biological performances, materials prepared by electrospinning technology have been used for a wide range of oral-related applications, such as tissue restoration, controlled drug release, anti-cancer, etc. In this regard, this article reviews the application and progress of electrospun nanofibers to various oral diseases in recent years. Firstly, engineering strategies of a variety of nanofiber structures together with their resultant functions will be introduced. Then, biological functions of electrospun nanofibers as well as their applications in the treatment of oral diseases are summarized and demonstrated. Finally, the development viewpoint of functional nanofibers is prospected, which is expected to lay the foundation and propose the direction for further clinical application.


2021 ◽  
Vol 1 (3) ◽  
pp. 353-365
Author(s):  
Athanasios Xanthopoulos ◽  
Iliana Daskalopoulou ◽  
Sofia Frountzi ◽  
Evangelia Papadimitriou

Angiogenesis is essential during development or when tissue restoration and oxygenation is required. Limited or excessive formation of blood vessels is a hallmark of several pathologies, and many angiogenesis-related pathways are being studied to highlight potential targets for effective angiogenesis-stimulating or inhibiting therapeutic approaches. A few studies point to the adrenergic system as a significant regulator of angiogenesis, directly or indirectly. Functional adrenergic receptors are expressed on endothelial cells and affect their response to the adrenergic system. The latter can also upregulate the release of growth factors by mural cells of the vessel wall, blood cells or cancer cells, thus subsequently affecting endothelial cell functions and angiogenesis. In the present study we summarize up-to-date literature on the known effects of the adrenergic receptors on physiological and pathological angiogenesis.


2021 ◽  
Vol 14 (12) ◽  
pp. 1215
Author(s):  
Elena-Emilia Tudoroiu ◽  
Cristina-Elena Dinu-Pîrvu ◽  
Mădălina Georgiana Albu Kaya ◽  
Lăcrămioara Popa ◽  
Valentina Anuța ◽  
...  

Presently, notwithstanding the progress regarding wound-healing management, the treatment of the majority of skin lesions still represents a serious challenge for biomedical and pharmaceutical industries. Thus, the attention of the researchers has turned to the development of novel materials based on cellulose derivatives. Cellulose derivatives are semi-synthetic biopolymers, which exhibit high solubility in water and represent an advantageous alternative to water-insoluble cellulose. These biopolymers possess excellent properties, such as biocompatibility, biodegradability, sustainability, non-toxicity, non-immunogenicity, thermo-gelling behavior, mechanical strength, abundance, low costs, antibacterial effect, and high hydrophilicity. They have an efficient ability to absorb and retain a large quantity of wound exudates in the interstitial sites of their networks and can maintain optimal local moisture. Cellulose derivatives also represent a proper scaffold to incorporate various bioactive agents with beneficial therapeutic effects on skin tissue restoration. Due to these suitable and versatile characteristics, cellulose derivatives are attractive and captivating materials for wound-healing applications. This review presents an extensive overview of recent research regarding promising cellulose derivatives-based materials for the development of multiple biomedical and pharmaceutical applications, such as wound dressings, drug delivery devices, and tissue engineering.


2021 ◽  
Vol 22 (21) ◽  
pp. 11372
Author(s):  
Corina Damian ◽  
Harmanvir Ghuman ◽  
Carrinton Mauney ◽  
Reem Azar ◽  
Janina Reinartz ◽  
...  

Extracellular matrix (ECM) hydrogel promotes tissue regeneration in lesion cavities after stroke. However, a bioscaffold’s regenerative potential needs to be considered in the context of the evolving pathological environment caused by a stroke. To evaluate this key issue in rats, ECM hydrogel was delivered to the lesion core/cavity at 7-, 14-, 28-, and 90-days post-stroke. Due to a lack of tissue cavitation 7-days post-stroke, implantation of ECM hydrogel did not achieve a sufficient volume and distribution to warrant comparison with the other time points. Biodegradation of ECM hydrogel implanted 14- and 28-days post-stroke were efficiently (80%) degraded by 14-days post-bioscaffold implantation, whereas implantation 90-days post-stroke revealed only a 60% decrease. Macrophage invasion was robust at 14- and 28-days post-stroke but reduced in the 90-days post-stroke condition. The pro-inflammation (M1) and pro-repair (M2) phenotype ratios were equivalent at all time points, suggesting that the pathological environment determines macrophage invasion, whereas ECM hydrogel defines their polarization. Neural cells (neural progenitors, neurons, astrocytes, oligodendrocytes) were found at all time points, but a 90-days post-stroke implantation resulted in reduced densities of mature phenotypes. Brain tissue restoration is therefore dependent on an efficient delivery of a bioscaffold to a tissue cavity, with 28-days post-stroke producing the most efficient biodegradation and tissue regeneration, whereas by 90-days post-stroke, these effects are significantly reduced. Improving our understanding of how the pathological environment influences biodegradation and the tissue restoration process is hence essential to devise engineering strategies that could extend the therapeutic window for bioscaffolds to repair the damaged brain.


Author(s):  
Milad Ahani-Nahayati ◽  
Vahid Niazi ◽  
Alireza Moradi ◽  
Bahareh Pourjabbar ◽  
Reza Roozafzoon ◽  
...  

: Currently, mesenchymal stem/stromal cells (MSCs) have attracted growing attention in the context of cell-based therapy in regenerative medicine. Following the first successful procurement of human MSCs from bone marrow (BM), these cells isolation has been conducted from various origins, in particular, the umbilical cord (UC). Umbilical cord-derived mesenchymal stem/stromal cells (UC-MSCs) can be acquired by a non-invasive plan and simply cultured, and thereby signifies their superiority over MSCs derived from other sources for medical purposes. Due to their unique attributes, including self-renewal, multipotency, and accessibility concomitant with their immunosuppressive competence and lower ethical concerns, UC-MSCs therapy is described as encouraging therapeutic options in cell-based therapies. Regardless of their unique aptitude to adjust inflammatory response during tissue recovery and delivering solid milieu for tissue restoration, UC-MSCs can be differentiated into a diverse spectrum of adult cells (e.g., osteoblast, chondrocyte, type II alveolar, hepatocyte, and cardiomyocyte). Interestingly, they demonstrate a prolonged survival and longer telomeres compared with MSCs derived from other sources, suggesting that UC-MSCs are desired source to use in regenerative medicine. In the present review, we deliver a brief review of UC-MSCs isolation, expansion concomitantly with immunosuppressive activities, and try to collect and discuss recent pre-clinical and clinical researches based on the use of UC-MSCs in regenerative medicine, focusing on with special focus on in vivo researches.


2021 ◽  
Vol 11 (16) ◽  
pp. 7253
Author(s):  
Carlo Bergonzi ◽  
Annalisa Bianchera ◽  
Giulia Remaggi ◽  
Maria Cristina Ossiprandi ◽  
Francesca Zimetti ◽  
...  

Active dressings acting on multiple fronts are requested in the field of care for chronic skin ulcers in order to ameliorate patient compliance and tissue restoration. Currently, three-dimensional polymeric hydrogels are widely investigated; however, no prototypes aiming to control oxidative stress and bacterial proliferation in the wound bed have been developed up until now. The present work describes the formulation of a novel chitosan-based printable material containing α-tocopherol at stable dosages to obtain reproducible 3D scaffolds possessing antioxidant and antimicrobial activity without the use of organic solvents. Stability assays mimicking the manufacturing process and storage conditions reveal no significant drug loss. Chemico-physical characterizations including porosity and behavior after dehydration/hydration demonstrate that the dressings are highly porous, can be dehydrated up to 80%, and can recover more than 90% of water upon 1 h of rehydration. Elasticity determined by stress/strain tests was higher than human skin and was sufficiently resistant for potential clinical manipulation. Footage of fibroblasts in in vitro cultures demonstrated the biocompatibility of the constructs over 28 days. Finally, scaffolds loaded with α-tocopherol showed dose-dependent antioxidant activity (up to 80% in less than 1 h), while antimicrobial action versus multi-drug resistant strains of Pseudomonas aeruginosa and Staphilococcus aureus was assessed by inhibition rings obtained through the Kirby–Bauer technique. The proposed hydrogels can be useful as dressings for the treatment of chronically infected wounds.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 738
Author(s):  
Jiayu Ye ◽  
Lauren A. E. Erland ◽  
Sandeep K. Gill ◽  
Stephanie L. Bishop ◽  
Andrea Verdugo-Meza ◽  
...  

The use of live biotherapeutic products (LBPs), including single strains of beneficial probiotic bacteria or consortiums, is gaining traction as a viable option to treat inflammatory-mediated diseases like inflammatory bowel disease (IBD). However, LBPs’ persistence in the intestine is heterogeneous since many beneficial bacteria lack mechanisms to tolerate the inflammation and the oxidative stress associated with IBD. We rationalized that optimizing LBPs with enhanced colonization and persistence in the inflamed intestine would help beneficial bacteria increase their bioavailability and sustain their beneficial responses. Our lab developed two bioengineered LBPs (SBT001/BioPersist and SBT002/BioColoniz) modified to enhance colonization or persistence in the inflamed intestine. In this study, we examined colon-derived metabolites via ultra-high performance liquid chromatography-mass spectrometry in colitic mice treated with either BioPersist or BioColoniz as compared to their unmodified parent strains (Escherichia coli Nissle 1917 [EcN] and Lactobacillus reuteri, respectively) or to each other. BioPersist administration resulted in lowered concentrations of inflammatory prostaglandins, decreased stress hormones such as adrenaline and corticosterone, increased serotonin, and decreased bile acid in comparison to EcN. In comparison to BioColoniz, BioPersist increased serotonin and antioxidant production, limited bile acid accumulation, and enhanced tissue restoration via activated purine and pyrimidine metabolism. These data generated several novel hypotheses for the beneficial roles that LBPs may play during colitis.


2021 ◽  
Author(s):  
Yanteng Zhao ◽  
Qiankun Yang ◽  
Qianqian Cheng ◽  
Junjie Ai ◽  
Mengna Feng ◽  
...  

Abstract In the present study, we have in situ synthesized polypyrrole (PPy) on the hydroxyethyl cellulose/soy protein isolate (HEC/SPI) sponges to construct electro-conductive HEC/SPI/PPy composite sponges (EHSS-Pn, n༞0). The composite sponges were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), conductivity and mechanical tests. The results indicated that EHSS-Pn still exhibit homogenous inter-connected macroporous structure for cell adhesion, proliferation and metabolism, indicating that the incorporation of PPy didn’t break the original HEC/SPI sponge structure. The electrical conductivity and mechanical properties of the HEC/SPI sponge were improved significantly by the incorporation of PPy. Cytocompatibility and hemocompatibility of all the sponges were evaluated by a series of in vitro experiments. The results of MTT assay and cell direct contact tests showed that the introduction of PPy didn’t cause any cytotoxicity and EHSS-Pn had good biocompatibility. Moreover, EHSS-Pn had good hemocompatibility and no significant side effects on the anticoagulant whole blood with the introduction of PPy. Therefore, the electro-conductive EHSS-Pn showed potential application in the tissue engineering field that requires electrical conductivity for stimulation or sensing such as neural tissue restoration.


Author(s):  
Evelina Vågesjö ◽  
Kristel Parv ◽  
David Ahl ◽  
Cédric Seignez ◽  
Carmen Herrera Hidalgo ◽  
...  

Rationale: Ischemic injuries remain a leading cause of mortality and morbidity worldwide, and restoration of functional blood perfusion is vital to limit tissue damage and support healing. Objective: To reveal a novel role of macrophages in reestablishment of functional tissue perfusion following ischemic injury that can be targeted to improve tissue restoration. Methods and Results: Using intravital microscopy of ischemic hind limb muscle in mice, and confocal microscopy of human tissues from amputated legs, we found that macrophages accumulated perivascularly in ischemic muscles, where they expressed high levels of iNOS. Genetic depletion of iNOS specifically in macrophages (Cx3cr1-CreERT2;Nos2fl/fl or LysM-Cre;Nos2fl/fl) did not affect vascular architecture but highly compromised blood flow regulation in ischemic but not healthy muscle, which resulted in aggravated ischemic damage. Thus, the ability to upregulate blood flow was shifted from eNOS (endothelial)-dependence in healthy muscles to completely rely on macrophage-derived iNOS during ischemia. Macrophages in ischemic muscles expressed high levels of CXCR4 and CCR2, and local overexpression by DNA plasmids encoding the corresponding chemokines CXCL12 or CCL2 increased macrophage numbers, while CXCL12 but not CCL2 induced their perivascular positioning. As a result, CXCL12-overexpression increased the number of perfused blood vessels in the ischemic muscles, improved functional muscle perfusion in a macrophage-iNOS-dependent manner, and ultimately restored limb function. Conclusions: This study establishes a new function for macrophages during tissue repair, as they regulate blood flow through the release of iNOS-produced NO. Further, we demonstrate that macrophages can be therapeutically targeted to improve blood flow regulation and functional recovery of ischemic tissues.


Author(s):  
N. V. Arguchinskaya ◽  
E. E. Beketov ◽  
E. V. Isaeva ◽  
N. S. Sergeeva ◽  
P. V. Shegay ◽  
...  

3D Bioprinting is a dynamically developing technology for tissue engineering and regenerative medicine. The main advantage of this technique is its ability to reproduce a given scaffold geometry and structure both in terms of the shape of the tissue-engineered construct and the distribution of its components. The key factor in bioprinting is bio ink, a cell-laden biocompatible material that mimics extracellular matrix. To meet all the requirements, the bio ink must include not only the main material, but also other components ensuring cell proliferation, differentiation and scaffold performance as a whole. The purpose of this review is to describe the most common materials applicable in bioprinting, consider their properties, prospects and limitations in cartilage restoration.


Sign in / Sign up

Export Citation Format

Share Document