scholarly journals Gene swamping alters evolution during range expansions in the protist Tetrahymena thermophila

2020 ◽  
Vol 16 (6) ◽  
pp. 20200244
Author(s):  
Felix Moerman ◽  
Emanuel A. Fronhofer ◽  
Andreas Wagner ◽  
Florian Altermatt

At species’ range edges, individuals often face novel environmental conditions that may limit range expansion until populations adapt. The potential to adapt depends on genetic variation upon which selection can act. However, populations at species’ range edges are often genetically depauperate. One mechanism increasing genetic variation is reshuffling existing variation through sex. Sex, however, can potentially limit adaptation by breaking up existing beneficial allele combinations (recombination load). The gene swamping hypothesis predicts this is specifically the case when populations expand along an abiotic gradient and asymmetric dispersal leads to numerous maladapted dispersers from the range core swamping the range edge. We used the ciliate Tetrahymena thermophila as a model for testing the gene swamping hypothesis. We performed replicated range expansions in landscapes with or without a pH-gradient, while simultaneously manipulating the occurrence of gene flow and sexual versus asexual reproduction. We show that sex accelerated evolution of local adaptation in the absence of gene flow, but hindered it in the presence of gene flow. However, sex affected adaptation independently of the pH-gradient, indicating that both abiotic gradients and the biotic gradient in population density lead to gene swamping. Overall, our results show that gene swamping alters adaptation in life-history strategies.

2019 ◽  
Author(s):  
Felix Moerman ◽  
Emanuel A. Fronhofer ◽  
Andreas Wagner ◽  
Florian Altermatt

AbstractAt species’ range edges, individuals often face novel environmental conditions that may limit range expansion until populations adapt. The potential to adapt depends on genetic variation upon which selection can act. However, populations at species’ range edges are often genetically depauperated. One mechanism to increase genetic variation is to reshuffle existing variation through sex. During range expansions, sex can, however, act as a double-edged sword. The gene swamping hypothesis predicts that for populations expanding along an abiotic gradient, sex can hinder adaptation if asymmetric dispersal leads to numerous maladapted dispersers from the range core swamping the range edge. In this study, we experimentally tested the gene swamping hypothesis by performing replicated range expansions in landscapes with or without an abiotic pH-gradient, using the ciliate Tetrahymena thermophila, while simultaneously manipulating the occurrence of gene flow and sex. We show that sex accelerated evolution of local adaptation in the absence of gene flow, but hindered it in the presence of gene flow. The effect of sex, however, was independent of the pH-gradient, indicating that not only abiotic gradients but also the biotic gradient in population density leads to gene swamping. Overall, our results show that gene swamping can affect adaptation in life-history strategies.


2016 ◽  
Vol 50 (3) ◽  
pp. 357-365 ◽  
Author(s):  
Charles J Reinertsen ◽  
Sarah M. Mitchell ◽  
Ke Han Bao ◽  
Katherine M. Halvorson ◽  
Michael J. Pappas ◽  
...  

2018 ◽  
Author(s):  
Megan Bontrager ◽  
Amy L. Angert

AbstractPopulations at the margins of a species’ geographic range are often thought to be poorly adapted to their environment. According to theoretical predictions, gene flow can inhibit these range edge populations if it disrupts adaptation to local conditions. Alternatively, if range edge populations are small or isolated, gene flow can provide beneficial genetic variation, and may facilitate adaptation to environmental change. We tested these competing predictions in the annual wildflower Clarkia pulchella using greenhouse crosses to simulate gene flow from sources across the geographic range into two populations at the northern range margin. We planted these between-population hybrids in common gardens at the range edge, and evaluated how genetic differentiation and climatic differences between edge populations and gene flow sources affected lifetime fitness. During an anomalously warm study year, gene flow from populations occupying historically warm sites improved fitness at the range edge, and plants with one or both parents from warm populations performed best. The effects of the temperature provenance of gene flow sources were most apparent at early life history stages, but precipitation provenance also affected reproduction. We also found benefits of gene flow that were independent of climate: after climate was controlled for, plants with parents from different populations performed better at later lifestages than those with parents from the same population, indicating that gene flow may improve fitness via relieving homozygosity. Further supporting this result, we found that increasing genetic differentiation of parental populations had positive effects on fitness of hybrid seeds. Gene flow from warmer populations, when it occurs, is likely to contribute adaptive genetic variation to populations at the northern range edge as the climate warms. On heterogeneous landscapes, climate of origin may be a better predictor of gene flow effects than geographic proximity.Impact summaryWhat limits species’ geographic ranges on the landscape? One process of interest when trying to answer this question is gene flow, which is the movement of genetic material between populations, as might occur in plants when seeds or pollen move across the landscape. One hypothesis that has been proposed is that gene flow from populations in other environments prevents populations at range edges from adapting to their local habitats. Alternatively, it has been suggested that these populations might benefit from gene flow, as it would provide more genetic material for natural selection to act upon.We tested these predictions in an annual wildflower, Clarkia pulchella. We simulated gene flow by pollinating plants from the range edge with pollen from other populations. Then we planted the resulting seeds into common gardens in the home sites of the range edge populations and recorded their germination, survival, and reproduction. The weather during our experiment was much warmer than historic averages in our garden sites, and perhaps because of this, we found that gene flow from warm locations improved the performance of range edge populations. This result highlights the potential role of gene flow and dispersal in aiding adaptation to warming climates. We also found some positive effects of gene flow that were independent of climate. Even after we statistically controlled for adaptation to temperature and precipitation, plants that were the result of gene flow pollinations produced more seeds and fruits than plants with both parents from the same population. Rather than preventing adaptation, in our experiment, gene flow generally had positive effects on fitness.


2021 ◽  
Vol 288 (1952) ◽  
pp. 20210407
Author(s):  
René D. Clark ◽  
Matthew L. Aardema ◽  
Peter Andolfatto ◽  
Paul H. Barber ◽  
Akihisa Hattori ◽  
...  

Understanding how evolutionary forces interact to drive patterns of selection and distribute genetic variation across a species' range is of great interest in ecology and evolution, especially in an era of global change. While theory predicts how and when populations at range margins are likely to undergo local adaptation, empirical evidence testing these models remains sparse. Here, we address this knowledge gap by investigating the relationship between selection, gene flow and genetic drift in the yellowtail clownfish, Amphiprion clarkii, from the core to the northern periphery of the species range. Analyses reveal low genetic diversity at the range edge, gene flow from the core to the edge and genomic signatures of local adaptation at 56 single nucleotide polymorphisms in 25 candidate genes, most of which are significantly correlated with minimum annual sea surface temperature. Several of these candidate genes play a role in functions that are upregulated during cold stress, including protein turnover, metabolism and translation. Our results illustrate how spatially divergent selection spanning the range core to the periphery can occur despite the potential for strong genetic drift at the range edge and moderate gene flow from the core populations.


2021 ◽  
Author(s):  
Felix Moerman ◽  
Emanuel A. Fronhofer ◽  
Florian Altermatt ◽  
Andreas Wagner

AbstractPopulations that expand their range can undergo rapid evolutionary adaptation, which can be aided or hindered by sexual reproduction and gene flow. Little is known about the genomic causes and consequences of such adaptation. We studied genomic adaptation during experimental range expansions of the protist Tetrahymena thermophila in landscapes with a uniform environment or a pH-gradient, both in the presence and absence of gene flow and sexual reproduction. We used pooled genome sequencing to identify genes subject to selection caused by the expanding range and by the pH-gradient. Adaptation to the range expansion affected genes involved in cell divisions and DNA repair, whereas adaptation to the pH gradient additionally affected genes involved in ion balance, and oxidoreductase reactions. These genetic changes may result from selection on growth and adaptation to low pH. Sexual reproduction affected both de novo mutation and standing genetic variation, whereas gene flow and the presence of a pH-gradient affected only standing variation. Sexual reproduction may have aided genetic adaptation during range expansion, but only in the absence of gene flow, which may have swamped expanding populations with maladapted alleles.


2011 ◽  
Vol 108 (28) ◽  
pp. 11704-11709 ◽  
Author(s):  
J. P. Sexton ◽  
S. Y. Strauss ◽  
K. J. Rice
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document