Carbon dioxide transport across membranes

2021 ◽  
Vol 11 (2) ◽  
pp. 20200090
Author(s):  
Marie Michenkova ◽  
Sara Taki ◽  
Matthew C. Blosser ◽  
Hyea J. Hwang ◽  
Thomas Kowatz ◽  
...  

Carbon dioxide (CO 2 ) movement across cellular membranes is passive and governed by Fick's law of diffusion. Until recently, we believed that gases cross biological membranes exclusively by dissolving in and then diffusing through membrane lipid. However, the observation that some membranes are CO 2 impermeable led to the discovery of a gas molecule moving through a channel; namely, CO 2 diffusion through aquaporin-1 (AQP1). Later work demonstrated CO 2 diffusion through rhesus (Rh) proteins and NH 3 diffusion through both AQPs and Rh proteins. The tetrameric AQPs exhibit differential selectivity for CO 2 versus NH 3 versus H 2 O, reflecting physico-chemical differences among the small molecules as well as among the hydrophilic monomeric pores and hydrophobic central pores of various AQPs. Preliminary work suggests that NH 3 moves through the monomeric pores of AQP1, whereas CO 2 moves through both monomeric and central pores. Initial work on AQP5 indicates that it is possible to create a metal-binding site on the central pore's extracellular face, thereby blocking CO 2 movement. The trimeric Rh proteins have monomers with hydrophilic pores surrounding a hydrophobic central pore. Preliminary work on the bacterial Rh homologue AmtB suggests that gas can diffuse through the central pore and three sets of interfacial clefts between monomers. Finally, initial work indicates that CO 2 diffuses through the electrogenic Na/HCO 3 cotransporter NBCe1. At least in some cells, CO 2 -permeable proteins could provide important pathways for transmembrane CO 2 movements. Such pathways could be amenable to cellular regulation and could become valuable drug targets.

2011 ◽  
Vol 307 (3-4) ◽  
pp. 470-478 ◽  
Author(s):  
Shumpei Yoshimura ◽  
Michihiko Nakamura

1987 ◽  
Vol 130 (1) ◽  
pp. 27-38
Author(s):  
JAMES W. HICKS ◽  
ATSUSHI ISHIMATSU ◽  
NORBERT HEISLER

Oxygen and carbon dioxide dissociation curves were constructed for the blood of the Nile monitor lizard, Varanus niloticus, acclimated for 12h at 25 and 35°C. The oxygen affinity of Varanus blood was low when Pco2 w a s in the range of in vivo values (25°C: P50 = 34.3 at PCOCO2 = 21 mmHg; 35°C: P50 = 46.2 mmHg at PCOCO2 = 35 mmHg; 1 mmHg = 133.3 Pa), and the oxygen dissociation curves were highly sigmoidal (Hill's n = 2.97 at 25°C and 3.40 at 35°C). The position of the O2 curves was relatively insensitive to temperature change with an apparent enthalpy of oxygenation (ΔH) of −9.2kJ mol−1. The carbon dioxide dissociation curves were shifted to the right with increasing temperature by decreasing total CCOCO2 at fixed PCOCO2, whereas the state of oxygenation had little effect on total blood CO2 content. The in vitro buffer value of true plasma (Δ[HCO3−]pl/-ΔpHpl) rose from 12.0 mequiv pH−1−1 at 25°C to 17.5 mequiv pH−11−1 at 35°C, reflecting a reversible increase of about 30% in haemoglobin concentration and haematocrit levels during resting conditions in vivo.


Author(s):  
David Chambers ◽  
Christopher Huang ◽  
Gareth Matthews

1950 ◽  
Vol 27 (2) ◽  
pp. 158-174 ◽  
Author(s):  
L. LEVENBOOK

1. The pH of the blood of the third instar Gastrophilus larva is 6.64 at 38° C. with a pH-temperature coefficient of -0.007 Per 1° C. rise in temperature. 2. The total CO2 content of the blood varies from 40.6 to 131.4 vol. % with an average of 72.4 vol. %. The CO2 content of the tissues minus the cuticle is very close to, and follows the variations in, the CO2 content of the blood. 3. The CO2 tension in the blood is from 300 to 500 mm. Hg. From 30 to 50% of the CO2 is in solution, the rest in the form of bicarbonate. Carbamate formation does not occur in the blood. 4. The ‘apparent’ dissociation constant for carbonic acid, (pK'1), has a value of 6.08 (S.D. ±0.06) at 38° C. and 6.19 (s.d. ±0.13) at 16° C. 5. CO2 dissociation curves have been drawn for 38 and 16° C. The slope of the curves indicates that the whole of the CO2 is given off at zero CO2 tension, and that the blood is adapted for functioning at high CO2 tensions.


Sign in / Sign up

Export Citation Format

Share Document