scholarly journals A simple DNA gate motif for synthesizing large-scale circuits

2011 ◽  
Vol 8 (62) ◽  
pp. 1281-1297 ◽  
Author(s):  
Lulu Qian ◽  
Erik Winfree

The prospects of programming molecular systems to perform complex autonomous tasks have motivated research into the design of synthetic biochemical circuits. Of particular interest to us are cell-free nucleic acid systems that exploit non-covalent hybridization and strand displacement reactions to create cascades that implement digital and analogue circuits. To date, circuits involving at most tens of gates have been demonstrated experimentally. Here, we propose a simple DNA gate architecture that appears suitable for practical synthesis of large-scale circuits involving possibly thousands of gates.

2018 ◽  
Author(s):  
Natalie E. C. Haley ◽  
Thomas E. Ouldridge ◽  
Alessandro Geraldini ◽  
Ard A. Louis ◽  
Jonathan Bath ◽  
...  

AbstractRecent years have seen great advances in the development of synthetic self-assembling molecular systems. Designing out-of-equilibrium architectures, however, requires a more subtle control over the thermodynamics and kinetics of reactions. We propose a new mechanism for enhancing thermodynamic drive of DNA strand displacement reactions whilst barely perturbing forward reaction rates - introducing mismatches in an internal location within the initial duplex. Through a combination of experiment and simulation, we demonstrate that displacement rates are strongly sensitive to mismatch location and can be tuned by rational design. By placing mismatches away from duplex ends, the thermodynamic drive for a strand-displacement reaction can be varied without significantly affecting the forward reaction rate. This hidden thermodynamic driving motif is ideal for the engineering of nonequilibrium systems that rely on catalytic control and must be robust to leak reactions.


ACS Nano ◽  
2021 ◽  
Vol 15 (2) ◽  
pp. 3272-3283
Author(s):  
Javier Cabello-Garcia ◽  
Wooli Bae ◽  
Guy-Bart V. Stan ◽  
Thomas E. Ouldridge

ChemPhysChem ◽  
2021 ◽  
Author(s):  
Hui Lv ◽  
Qian Li ◽  
Jiye Shi ◽  
Fei Wang ◽  
Chunhai Fan

2021 ◽  
Author(s):  
Zhongjie Li ◽  
Fengfeng Liu ◽  
Jinzhao Cui ◽  
Zhibin Peng ◽  
Zhaorui Chang ◽  
...  

2018 ◽  
Vol 7 (12) ◽  
pp. 2737-2741 ◽  
Author(s):  
Gourab Chatterjee ◽  
Yuan-Jyue Chen ◽  
Georg Seelig

1994 ◽  
Vol 343 (1306) ◽  
pp. 425-430 ◽  

As recently published (Kellings et al. J. gen Vir. 73, 1025-1029 (1992)), the analysis of purified scrapie prions by return refocusing gel electrophoresis revealed remaining nucleic acids in the size range up to 1100 nucleotides. The results defined the possible characteristics of a hypothetical scrapie-specific nucleic acid. If homogeneous in size, such a molecule would be less than 80 nucleotides in length at a particle-toinfectivity ratio (p: i) near unity; if heterogeneous, scrapie-specific nucleic acids would have to include molecules smaller than 240 nucleotides. To decrease the amount of nucleic acids, several modifications of the PrP Sc purification scheme were introduced. Instead of sucrose gradient, ultrafiltration was applied as a purification step and nucleic acids were degraded by BenzonasetM after ultrafiltration, but significant reduction of the p: i ratio could not be achieved. To prevent trapping of nucleic acids in prion rods, nuclease (Benzonase™ ) was added into the tissue homogenate and incubated at 37°C, overnight. The Benzonase treatment revealed no loss of infectivity, but the whole procedure of nucleic acid analysis did not lead to a reduction of the p :i ratio. In another approach the number of nucleic acid degradations steps was reduced to essentially two steps: Zn 2+ hydrolysis and Benzonase digestion. Higher Zn 2+ concentrations and prolonged incubation times resulted in a more efficient nucleic acid degradation. The bioassays yielded complete recovery of infectivity. Large-scale preparations for determining the p: i ratio are still underway


Sign in / Sign up

Export Citation Format

Share Document