scholarly journals Rational design of hidden thermodynamic driving through DNA mismatch repair

2018 ◽  
Author(s):  
Natalie E. C. Haley ◽  
Thomas E. Ouldridge ◽  
Alessandro Geraldini ◽  
Ard A. Louis ◽  
Jonathan Bath ◽  
...  

AbstractRecent years have seen great advances in the development of synthetic self-assembling molecular systems. Designing out-of-equilibrium architectures, however, requires a more subtle control over the thermodynamics and kinetics of reactions. We propose a new mechanism for enhancing thermodynamic drive of DNA strand displacement reactions whilst barely perturbing forward reaction rates - introducing mismatches in an internal location within the initial duplex. Through a combination of experiment and simulation, we demonstrate that displacement rates are strongly sensitive to mismatch location and can be tuned by rational design. By placing mismatches away from duplex ends, the thermodynamic drive for a strand-displacement reaction can be varied without significantly affecting the forward reaction rate. This hidden thermodynamic driving motif is ideal for the engineering of nonequilibrium systems that rely on catalytic control and must be robust to leak reactions.

ChemPhysChem ◽  
2021 ◽  
Author(s):  
Hui Lv ◽  
Qian Li ◽  
Jiye Shi ◽  
Fei Wang ◽  
Chunhai Fan

Nanoscale ◽  
2015 ◽  
Vol 7 (30) ◽  
pp. 12970-12978 ◽  
Author(s):  
Ismael Mullor Ruiz ◽  
Jean-Michel Arbona ◽  
Amitkumar Lad ◽  
Oscar Mendoza ◽  
Jean-Pierre Aimé ◽  
...  

Design and characterization of a DNA-based localized amplification circuit which, upon tethering on a DNA origami platform, greatly accelerates the catalytic response.


2016 ◽  
Vol 8 (37) ◽  
pp. 6701-6704 ◽  
Author(s):  
Chenxi Li ◽  
Ruoyun Lin ◽  
Tian Li ◽  
Feng Liu ◽  
Na Li

Binding-induced DNA strand-displacement reactions diversify the applications beyond nucleic acids and small molecules.


2020 ◽  
Vol 48 (19) ◽  
pp. 10691-10701
Author(s):  
Chanjuan Liu ◽  
Yuan Liu ◽  
Enqiang Zhu ◽  
Qiang Zhang ◽  
Xiaopeng Wei ◽  
...  

Abstract Designing biochemical systems that can be effectively used in diverse fields, including diagnostics, molecular computing and nanomachines, has long been recognized as an important goal of molecular programming and DNA nanotechnology. A key issue in the development of such practical devices on the nanoscale lies in the development of biochemical components with information-processing capacity. In this article, we propose a molecular device that utilizes DNA strand displacement networks and allows interactive inhibition between two input signals; thus, it is termed a cross-inhibitor. More specifically, the device supplies each input signal with a processor such that the processing of one input signal will interdict the signal of the other. Biochemical experiments are conducted to analyze the interdiction performance with regard to effectiveness, stability and controllability. To illustrate its feasibility, a biochemical framework grounded in this mechanism is presented to determine the winner of a tic-tac-toe game. Our results highlight the potential for DNA strand displacement cascades to act as signal controllers and event triggers to endow molecular systems with the capability of controlling and detecting events and signals.


2011 ◽  
Vol 40 (7) ◽  
pp. 3289-3298 ◽  
Author(s):  
Dzifa Y. Duose ◽  
Ryan M. Schweller ◽  
Jan Zimak ◽  
Arthur R. Rogers ◽  
Walter N. Hittelman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document