scholarly journals Meta-DNA: synthetic biology via DNA nanostructures and hybridization reactions

2012 ◽  
Vol 9 (72) ◽  
pp. 1637-1653 ◽  
Author(s):  
Harish Chandran ◽  
Nikhil Gopalkrishnan ◽  
Bernard Yurke ◽  
John Reif

Can a wide range of complex biochemical behaviour arise from repeated applications of a highly reduced class of interactions? In particular, can the range of DNA manipulations achieved by protein enzymes be simulated via simple DNA hybridization chemistry? In this work, we develop a biochemical system which we call meta-DNA (abbreviated as mDNA), based on strands of DNA as the only component molecules. Various enzymatic manipulations of these mDNA molecules are simulated via toehold-mediated DNA strand displacement reactions. We provide a formal model to describe the required properties and operations of our mDNA, and show that our proposed DNA nanostructures and hybridization reactions provide these properties and functionality. Our meta-nucleotides are designed to form flexible linear assemblies (single-stranded mDNA ( ss mDNA)) analogous to single-stranded DNA. We describe various isothermal hybridization reactions that manipulate our mDNA in powerful ways analogous to DNA–DNA reactions and the action of various enzymes on DNA. These operations on mDNA include (i) hybridization of ss mDNA into a double-stranded mDNA ( ds mDNA) and heat denaturation of a ds mDNA into its component ss mDNA, (ii) strand displacement of one ss mDNA by another, (iii) restriction cuts on the backbones of ss mDNA and ds mDNA, (iv) polymerization reactions that extend ss mDNA on a template to form a complete ds mDNA, (v) synthesis of mDNA sequences via mDNA polymerase chain reaction, (vi) isothermal denaturation of a ds mDNA into its component ss mDNA, and (vii) an isothermal replicator reaction that exponentially amplifies ss mDNA strands and may be modified to allow for mutations.

ChemPhysChem ◽  
2021 ◽  
Author(s):  
Hui Lv ◽  
Qian Li ◽  
Jiye Shi ◽  
Fei Wang ◽  
Chunhai Fan

Nanoscale ◽  
2015 ◽  
Vol 7 (30) ◽  
pp. 12970-12978 ◽  
Author(s):  
Ismael Mullor Ruiz ◽  
Jean-Michel Arbona ◽  
Amitkumar Lad ◽  
Oscar Mendoza ◽  
Jean-Pierre Aimé ◽  
...  

Design and characterization of a DNA-based localized amplification circuit which, upon tethering on a DNA origami platform, greatly accelerates the catalytic response.


2020 ◽  
Vol 17 (167) ◽  
pp. 20190866 ◽  
Author(s):  
Stefan Badelt ◽  
Casey Grun ◽  
Karthik V. Sarma ◽  
Brian Wolfe ◽  
Seung Woo Shin ◽  
...  

Information technologies enable programmers and engineers to design and synthesize systems of startling complexity that nonetheless behave as intended. This mastery of complexity is made possible by a hierarchy of formal abstractions that span from high-level programming languages down to low-level implementation specifications, with rigorous connections between the levels. DNA nanotechnology presents us with a new molecular information technology whose potential has not yet been fully unlocked in this way. Developing an effective hierarchy of abstractions may be critical for increasing the complexity of programmable DNA systems. Here, we build on prior practice to provide a new formalization of ‘domain-level’ representations of DNA strand displacement systems that has a natural connection to nucleic acid biophysics while still being suitable for formal analysis. Enumeration of unimolecular and bimolecular reactions provides a semantics for programmable molecular interactions, with kinetics given by an approximate biophysical model. Reaction condensation provides a tractable simplification of the detailed reactions that respects overall kinetic properties. The applicability and accuracy of the model is evaluated across a wide range of engineered DNA strand displacement systems. Thus, our work can serve as an interface between lower-level DNA models that operate at the nucleotide sequence level, and high-level chemical reaction network models that operate at the level of interactions between abstract species.


2016 ◽  
Vol 8 (37) ◽  
pp. 6701-6704 ◽  
Author(s):  
Chenxi Li ◽  
Ruoyun Lin ◽  
Tian Li ◽  
Feng Liu ◽  
Na Li

Binding-induced DNA strand-displacement reactions diversify the applications beyond nucleic acids and small molecules.


2011 ◽  
Vol 40 (7) ◽  
pp. 3289-3298 ◽  
Author(s):  
Dzifa Y. Duose ◽  
Ryan M. Schweller ◽  
Jan Zimak ◽  
Arthur R. Rogers ◽  
Walter N. Hittelman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document