initial reaction rate
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 18)

H-INDEX

8
(FIVE YEARS 2)

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4309
Author(s):  
Shufei Jiao ◽  
Zijie Liu ◽  
Min Liu ◽  
Yongxian Liu ◽  
Shuming Zhong ◽  
...  

Selenium-functionalized starch (Se-starch80) is one of the main functional foods used for selenium supplementation. In traditional agriculture, Se-starch has some deficiencies such as long growth cycle and unstable selenium content that prevent its antioxidant performance. In this study, Se-starch was prepared by the nucleophilic addition between NaSeH and carbon-carbon double bond of octenyl succinic anhydride waxy corn starch ester (OSA starch). Some techniques such as 1HNMR, XPS, SEM-EDS, XRD and FT-IR were used to characterize the relevant samples and the results showed that the modification did not destroy the starch framework significantly and the catalytic center (negative divalent selenium) was anchored on the starch framework. The intensive distribution of catalytic center on the starch surface and the hydrophobic microenvironments derived from the OSA chains furnished the Se-starch80 with a high GPx-like catalytic activity (initial reaction rate = 3.64 μM/min). This value was about 1.5 × 105 times higher than that of a typical small-molecule GPx mimic (PhSeSePh). In addition, the Se-starch80, without any cytotoxicity, showed a saturated kinetic catalytic behavior that is similar to a typical enzyme. This work exemplifies a biodegradable selenium-functionalized polymer platform for the high-performing GPx mimic.


Reactions ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 486-498
Author(s):  
Eva Vrbková ◽  
Adéla Šímová ◽  
Eliška Vyskočilová ◽  
Miloslav Lhotka ◽  
Libor Červený

Acid-treated montmorillonites (MMT) were used as catalysts of carvone isomerization to carvacrol. Mineral acids—sulfuric, hydrochloric, nitric acids and organic acids (acetic and chloroacetic)—were used for the acid treatment. Prepared materials were characterized by available characterization methods, namely XRD, EA, TPD, TPO, UV-Vis, laser light scattering and nitrogen physisorption. The structure of montmorillonite remained intact after treatment. However, TPD proved the increase of acidity of acid-treated materials comparing pure montmorillonite. All materials were tested in the isomerization of carvone, producing carvacrol as the desired product. The initial reaction rate increased using the materials in the row MMT-COOH < MMT-HNO3 < MMT-ClCOOH < MMT-H2SO4 < MMT-HCl, which is in accordance with the pKa of acids used for the treatment. The number of weak acid sites strongly influenced the selectivity to carvacrol. The optimal solvent for the reaction was toluene. Total conversion of carvone and the selectivity to carvacrol 95.5% was achieved within 24 h under 80 °C, with toluene as solvent and montmorillonite treated by chloroacetic acid as catalyst. The catalyst may be reused after calcination with only a low loss of activity.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 474
Author(s):  
Jan-Paul Grass ◽  
Katharina Klühspies ◽  
Bastian Reiprich ◽  
Wilhelm Schwieger ◽  
Alexandra Inayat

This study is dedicated to the comparative investigation of the catalytic activity of layer-like Faujasite-type (FAU) zeolite X obtained from three different synthesis routes (additive-free route, Li2CO3 route, and TPOAC route) in a liquid-phase Knoevenagel condensation of benzaldehyde and ethyl cyanoacetate to ethyl trans-α-cyanocinnamate. It is shown that the charge-balancing cations (Na+ and K+) and the morphological properties have a strong influence on the apparent reaction rate and degree of conversion. The highest initial reaction rate could be found for the layer-like zeolite X synthesised by the additive-free route in the potassium form. In most cases, the potassium-exchanged zeolites enabled higher maximum conversions and higher reaction rates compared to the zeolite X catalysts in sodium form. However, very thin crystal plates (below 100 nm thickness), similar to those obtained in the presence of TPOAC, did not withstand the multiple aqueous ion exchange procedure, with the remaining coarse crystals facilitating less enhancement of the catalytic activity.


Author(s):  
Jesús Andrés Tavizón Pozos ◽  
Gerardo Chávez Esquivel ◽  
Ignacio Cervantes Arista ◽  
José Antonio de los Reyes Heredia ◽  
Víctor Alejandro Suárez Toriello

Abstract The influence of Al2O3–ZrO2 and TiO2–ZrO2 supports on NiMo-supported catalysts at a different sulfur concentration in a model hydrodeoxygenation (HDO)-hydrodesulfurization (HDS) co-processing reaction has been studied in this work. A competition effect between phenol and dibenzothiophene (DBT) for active sites was evidenced. The competence for the active sites between phenol and DBT was measured by comparison of the initial reaction rate and selectivity at two sulfur concentrations (200 and 500 ppm S). NiMo/TiO2–ZrO2 was almost four-fold more active in phenol HDO co-processed with DBT than NiMo/Al2O3–ZrO2 catalyst. Consequently, more labile active sites are present on NiMo/TiO2–ZrO2 than in NiMo/Al2O3–ZrO2 confirmed by the decrease in co-processing competition for the active sites between phenol and DBT. DBT molecules react at hydrogenolysis sites (edge and rim) preferentially so that phenol reacts at hydrogenation sites (edge and edge). However, the hydrogenated capacity would be lost when the sulfur content was increased. In general, both catalysts showed similar functionalities but different degrees of competition according to the highly active NiMoS phase availability. TiO2–ZrO2 as the support provided weaker metal-support interaction than Al2O3–ZrO2, generating a larger fraction of easily reducible octahedrally coordinated Mo- and Ni-oxide species, causing that NiMo/TiO2–ZrO2 generated precursors of MoS2 crystallites with a longer length and stacking but with a higher degree of Ni-promotion than NiMo/Al2O3–ZrO2 catalyst.


2021 ◽  
Vol 11 (4) ◽  
pp. 1456
Author(s):  
Yusuke Hayakawa ◽  
Ryoichi Nakayama ◽  
Norikazu Namiki ◽  
Masanao Imai

In this study, we maximized the reactivity of phospholipids hydrolysis with immobilized industrial-class phospholipase A1 (PLA1) at the desired water content in the water-in-oil (W/O) microemulsion phase. The optimal hydrophobic-hydrophilic condition of the reaction media in a hydrophobic enzyme reaction is critical to realize the maximum yields of enzyme activity of phospholipase A1. It was attributed to enzymes disliking hydrophobic surroundings as a special molecular structure for reactivity. Immobilization of PLA1 was successfully achieved with the aid of a hydrophobic carrier (Accurel MP100) combination with the treatment using glutaraldehyde. The immobilized yield was over 90% based on simple adsorption. The hydrolysis reaction was kinetically investigated through the effect of glutaraldehyde treatment of carrier and water content in the W/O microemulsion phase. The initial reaction rate increased linearly with an increasing glutaraldehyde concentration and then leveled off over a 6% glutaraldehyde concentration. The initial reaction rate, which was predominantly driven by the water content in the organic phase, changed according to a typical bell-shaped curve with respect to the molar ratio of water to phospholipid. It behaved in a similar way with different glutaraldehyde concentrations. After 10 cycles of repeated use, the reactivity was well sustained at 40% of the initial reaction rate and the creation of the final product. Accumulated yield after 10 times repetition was sufficient for industrial applications. Immobilized PLA1 has demonstrated potential as a biocatalyst for the production of phospholipid biochemicals.


Author(s):  
Bruna Pratto ◽  
Martha Suzana Rodrigues dos Santos-Rocha ◽  
Gustavo Batista ◽  
Inti Cavalcanti-Montaño ◽  
Carlos Alberto Suarez Galeano ◽  
...  

Bioreactors operating in fed-batch mode improve the enzymatic hydrolysis productivity at high biomass loadings. The present work aimed to apply rational feeding strategies of substrates (pretreated sugarcane straw) and enzymes (CellicCtec2?) to achieve sugar titers at industrial levels. The instantaneous substrate concentration was kept constant at 5 % (w/v) along the fed-batch, and the enzyme dosage inside the bioreactor was adjusted so that the reaction rate was not less than a pre-defined value (a percentage of the initial reaction rate - rmin). When r reached values below rmin, enzyme pulses were applied to return the reaction rate to its initial value (r0). The optimized feeding policy indicated a reaction rate maintained at a minimum of 70 % of r0, based on the trade-off between glucose productivity and enzyme saving. Initially, it was possible to process a total of 21 % (w/v) solid load, achieving 160 g/L of glucose concentration and 80 % of glucose yield. It was verified that non-productive enzyme adsorption was the main reason for some reduction of hydrolysis yield regarding the theoretical cellulose-to-glucose conversion. An increment of 30 g/L in the final glucose concentration was achieved when a lignin-blocking additive (soybean protein) was used in the enzymatic hydrolysis.


Synlett ◽  
2020 ◽  
Author(s):  
Akira Yada ◽  
Kazuhiko Sato ◽  
Tarojiro Matsumura ◽  
Yasunobu Ando ◽  
Kenji Nagata ◽  
...  

AbstractThe prediction of the initial reaction rate in the tungsten-catalyzed epoxidation of alkenes by using a machine learning approach is demonstrated. The ensemble learning framework used in this study consists of random sampling with replacement from the training dataset, the construction of several predictive models (weak learners), and the combination of their outputs. This approach enables us to obtain a reasonable prediction model that avoids the problem of overfitting, even when analyzing a small dataset.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2250
Author(s):  
Stefano Salvestrini ◽  
Angelo Fenti ◽  
Simeone Chianese ◽  
Pasquale Iovino ◽  
Dino Musmarra

Humic acids (HA) are a potential hazard to aquatic ecosystems and human health. Because biological treatment of contaminated water does not satisfactorily remove these pollutants, novel approaches are under evaluation. This work explores electrochemical oxidation of HA in aqueous solution in a lab-scale apparatus using platinum-coated titanium electrodes. We evaluated the effects of HA concentration, current density, chloride concentration and ionic strength on the rate of HA oxidation. The initial reaction rate method was used for determining the rate law of HA degradation. The results showed that the reaction rate was first-order relative to HA concentration, chloride concentration and current density. An appreciable effect of ionic strength was also observed, most likely due to the polyanionic character of HA. We propose a kinetic model that satisfactorily fits the experimental data.


Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 853
Author(s):  
Pedro L. Valencia ◽  
Bastián Sepúlveda ◽  
Diego Gajardo ◽  
Carolina Astudillo-Castro

A direct linear plot was applied to estimate kinetic constants using the product’s competitive inhibition equation. The challenge consisted of estimating three kinetic constants, Vmax, Km, and Kp, using two independent variables, substrates, and product concentrations, in just one stage of mathematical treatment. The method consisted of combining three initial reaction rate data and avoiding the use of the same three product concentrations (otherwise, this would result in a mathematical indetermination). The direct linear plot method was highly superior to the least-squares method in terms of accuracy and robustness, even under the addition of error. The direct linear plot method is a reliable and robust method that can be applied to estimate Kp in inhibition studies in pharmaceutical and biotechnological areas.


Sign in / Sign up

Export Citation Format

Share Document