scholarly journals Structural coloured feathers of mallards act by simple multilayer photonics

2017 ◽  
Vol 14 (133) ◽  
pp. 20170407 ◽  
Author(s):  
Doekele G. Stavenga ◽  
Casper J. van der Kooi ◽  
Bodo D. Wilts

The blue colours of the speculum of the mallard ( Anas platyrhynchos ), both male and female, and the green head feathers of the male arise from light interacting with stacks of melanosomes residing in the feather barbules. Here, we show that the iridescent colours can be quantitatively explained with an optical multilayer model by using a position-dependent effective refractive index, which results from the varying ratio of melanin and keratin. Reflectance spectra obtained by multilayer modelling and three-dimensional finite-difference time-domain calculations were virtually identical. The spectral properties of the barbules' photonic structures are sensitive to variations in the multilayer period and the cortex thickness, but they are surprisingly robust to variations in the spatial parameters of the barbules' melanosome stacks. The blue and green reflectance spectra of the structural-coloured feathers correspond with the sensitivity spectra of the short- and middle-wavelength-sensitive photoreceptors, indicating their biological significance for intraspecific signalling.

2014 ◽  
Vol 602-605 ◽  
pp. 3359-3362
Author(s):  
Chun Li Zhu ◽  
Jing Li

In this paper, output near fields of nanowires with different optical and structure configurations are calculated by using the three-dimensional finite-difference time-domain (3D FDTD) method. Then a nanowire with suitable near field distribution is chosen as the probe for scanning dielectric and metal nanogratings. Scanning results show that the resolution in near-field imaging of dielectric nanogratings can be as low as 80nm, and the imaging results are greatly influenced by the polarization direction of the incident light. Compared with dielectric nanogratings, metal nanogratings have significantly enhanced resolutions when the arrangement of gratings is perpendicular to the polarization direction of the incident light due to the enhancement effect of the localized surface plasmons (SPs). Results presented here could offer valuable references for practical applications in near-field imaging with nanowires as optical probes.


Author(s):  
Л.С. Басалаева ◽  
А.В. Царев ◽  
К.В. Аникин ◽  
С.Л. Вебер ◽  
Н.В. Крыжановская ◽  
...  

Resonance reflection of light from the ordered arrays of silicon nanopillars (Si NP) was investigated. The height of Si NP was 450 nm. The effect of Si NP oxidation in concentrated nitric acid on the position of resonances in reflection spectra was studied. A weak influence of the additional polymeric coating on the characteristics of reflection from the structures was proven. It is established on the basis of the results of experimental investigation and direct numerical modeling by means of three-dimensional finite difference time domain algorithm (3D FDTD) that the dependence of the resonant wavelength for Si NP on the diameter of Si NP is a linear function with nonzero displacement depending on the pitch.


Sign in / Sign up

Export Citation Format

Share Document