scholarly journals Predicting the outcome of competition when fitness inequality is variable

2015 ◽  
Vol 2 (8) ◽  
pp. 150274 ◽  
Author(s):  
Michael T. Pedruski ◽  
Gregor F. Fussmann ◽  
Andrew Gonzalez

Traditional niche theory predicts that when species compete for one limiting resource in simple ecological settings the more fit competitor should exclude the less fit competitor. Since the advent of neutral theory ecologists have increasingly become interested both in how the magnitude of fitness inequality between competitors and stochasticity may affect this prediction. We used numerical simulations to investigate the outcome of two-species resource competition along gradients of fitness inequality (inequality in R *) and initial population size in the presence of demographic stochasticity. We found that the deterministic prediction of more fit competitors excluding less fit competitors was often unobserved when fitness inequalities were low or stochasticity was strong, and unexpected outcomes such as dominance by the less fit competitor, long-term co-persistence of both competitors or the extinction of both competitors could be common. By examining the interaction between fitness inequality and stochasticity our results mark the range of parameter space in which the predictions of niche theory break down most severely, and suggest that questions about whether competitive dynamics are driven by neutral or niche processes may be locally contingent.

Author(s):  
Madoka Muroishi ◽  
Akira Yakita

AbstractUsing a small, open, two-region economy model populated by two-period-lived overlapping generations, we analyze long-term agglomeration economy and congestion diseconomy effects of young worker concentration on migration and the overall fertility rate. When the migration-stability condition is satisfied, the distribution of young workers between regions is obtainable in each period for a predetermined population size. Results show that migration stability does not guarantee dynamic stability of the economy. The stationary population size stability depends on the model parameters and the initial population size. On a stable trajectory converging to the stationary equilibrium, the overall fertility rate might change non-monotonically with the population size of the economy because of interregional migration. In each period, interregional migration mitigates regional population changes caused by fertility differences on the stable path. Results show that the inter-regional migration-stability condition does not guarantee stability of the population dynamics of the economy.


2016 ◽  
Vol 283 (1823) ◽  
pp. 20152404 ◽  
Author(s):  
Jorge Velázquez ◽  
Robert B. Allen ◽  
David A. Coomes ◽  
Markus P. Eichhorn

Plant sizes within populations often exhibit multimodal distributions, even when all individuals are the same age and have experienced identical conditions. To establish the causes of this, we created an individual-based model simulating the growth of trees in a spatially explicit framework, which was parametrized using data from a long-term study of forest stands in New Zealand. First, we demonstrate that asymmetric resource competition is a necessary condition for the formation of multimodal size distributions within cohorts. By contrast, the legacy of small-scale clustering during recruitment is transient and quickly overwhelmed by density-dependent mortality. Complex multi-layered size distributions are generated when established individuals are restricted in the spatial domain within which they can capture resources. The number of modes reveals the effective number of direct competitors, while the separation and spread of modes are influenced by distances among established individuals. Asymmetric competition within local neighbourhoods can therefore generate a range of complex size distributions within even-aged cohorts.


2019 ◽  
Vol 37 (07) ◽  
pp. 666-670
Author(s):  
Martha B. Kole ◽  
Nina K. Ayala ◽  
Melissa A. Clark ◽  
Phinnara Has ◽  
Erika F. Werner

Abstract Objective Patient's trust in physicians is a significant predictor of continuity, adherence, and satisfaction with care. However, it is unclear what influences a woman's trust in her physician. This study sought to determine if women's trust in their clinicians was affected by unexpected outcomes at the time of delivery. Study Design This is a secondary analysis of a prospective cohort of 300 postpartum women with gestational diabetes mellitus. Participants completed the validated Trust in Physician Scale during their postpartum hospitalization. Participants' scores were compared based on their exposure to an unexpected pregnancy outcome. Results Of the 300 women consented to participate in this study, 294 completed the Trust in Physician Scale. The mean overall trust score was 80/100 with a range of 42 to 100. Unexpected pregnancy outcomes occurred in 41% (120) of women in this cohort. There was no significant difference in the trust score between women who did and did not have at least one unexpected outcome (0.79 vs. 0.79, p = 0.93). Additionally, there was no significant association between the trust score and any individual unexpected pregnancy outcome. Conclusion Unexpected pregnancy outcomes are not associated with changes in women's trust in their obstetric clinicians. These results emphasize the antepartum period as the essential time for patient–physician relationship building which has important implications for postpartum follow-up and long-term psychiatric sequelae from unexpected outcomes.


2006 ◽  
Vol 2006 (2) ◽  
pp. 582-597 ◽  
Author(s):  
Omar Fala ◽  
John Molson ◽  
Michel Aubertin ◽  
Bruno Bussière ◽  
Robert P. Chapuis

1998 ◽  
Vol 30 (4) ◽  
pp. 948-967 ◽  
Author(s):  
C. Jacob ◽  
J. Peccoud

This paper considers a branching process generated by an offspring distribution F with mean m < ∞ and variance σ2 < ∞ and such that, at each generation n, there is an observed δ-migration, according to a binomial law Bpvn*Nnbef which depends on the total population size Nnbef. The δ-migration is defined as an emigration, an immigration or a null migration, depending on the value of δ, which is assumed constant throughout the different generations. The process with δ-migration is a generation-dependent Galton-Watson process, whereas the observed process is not in general a martingale. Under the assumption that the process with δ-migration is supercritical, we generalize for the observed migrating process the results relative to the Galton-Watson supercritical case that concern the asymptotic behaviour of the process and the estimation of m and σ2, as n → ∞. Moreover, an asymptotic confidence interval of the initial population size is given.


2011 ◽  
Vol 8 (63) ◽  
pp. 1472-1479 ◽  
Author(s):  
John M. Drake ◽  
Jeff Shapiro ◽  
Blaine D. Griffen

Population extinction is a fundamental biological process with applications to ecology, epidemiology, immunology, conservation biology and genetics. Although a monotonic relationship between initial population size and mean extinction time is predicted by virtually all theoretical models, attempts at empirical demonstration have been equivocal. We suggest that this anomaly is best explained with reference to the transient properties of ensembles of populations. Specifically, we submit that under experimental conditions, many populations escape their initially vulnerable state to reach quasi-stationarity, where effects of initial conditions are erased. Thus, extinction of populations initialized far from quasi-stationarity may be exposed to a two-phase extinction hazard. An empirical prediction of this theory is that the fit Cox proportional hazards regression model for the observed survival time distribution of a group of populations will be shown to violate the proportional hazards assumption early in the experiment, but not at later times. We report results of two experiments with the cladoceran zooplankton Daphnia magna designed to exhibit this phenomenon. In one experiment, habitat size was also varied. Statistical analysis showed that in one of these experiments a transformation occurred so that very early in the experiment there existed a transient phase during which the extinction hazard was primarily owing to the initial population size, and that this was gradually replaced by a more stable quasi-stationary phase. In the second experiment, only habitat size unambiguously displayed an effect. Analysis of data pooled from both experiments suggests that the overall extinction time distribution in this system results from the mixture of extinctions during the initial rapid phase, during which the effects of initial population size can be considerable, and a longer quasi-stationary phase, during which only habitat size has an effect. These are the first results, to our knowledge, of a two-phase population extinction process.


2017 ◽  
Vol 284 (1863) ◽  
pp. 20171503 ◽  
Author(s):  
Thorsten Wiegand ◽  
Felix May ◽  
Martin Kazmierczak ◽  
Andreas Huth

Understanding the structure and dynamics of highly diverse tropical forests is challenging. Here we investigate the factors that drive the spatio-temporal variation of local tree numbers and species richness in a tropical forest (including 1250 plots of 20 × 20 m 2 ). To this end, we use a series of dynamic models that are built around the local spatial variation of mortality and recruitment rates, and ask which combination of processes can explain the observed spatial and temporal variation in tree and species numbers. We find that processes not included in classical neutral theory are needed to explain these fundamental patterns of the observed local forest dynamics. We identified a large spatio-temporal variability in the local number of recruits as the main missing mechanism, whereas variability of mortality rates contributed to a lesser extent. We also found that local tree numbers stabilize at typical values which can be explained by a simple analytical model. Our study emphasized the importance of spatio-temporal variability in recruitment beyond demographic stochasticity for explaining the local heterogeneity of tropical forests.


Sign in / Sign up

Export Citation Format

Share Document